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ABSTRACT

Recently, the hybrid deep neural networks and hidden Markov mod-
els (DNN/HMMs) have achieved dramatic gains over the conven-
tional GMM/HMMs method on various large vocabulary continuous
speech recognition (LVCSR) tasks. In this paper, we propose two
new methods to further improve the hybrid DNN/HMMs model:
i) use dropout as pre-conditioner (DAP) to initialize DNN prior to
back-propagation (BP) for better recognition accuracy; ii) employ
a shrinking DNN structure (sDNN) with hidden layers decreasing
in size from bottom to top for the purpose of reducing model size
and expediting computation time. The proposed DAP method is
evaluated in a 70-hour Mandarin transcription (PSC) task and the
309-hour Switchboard (SWB) task. Compared with the traditional
greedy layer-wise pre-trained DNN, it can achieve about 10% and
6.8% relative recognition error reduction for PSC and SWB tasks
respectively. In addition, we also evaluate sDNN as well as its com-
bination with DAP on the SWB task. Experimental results show that
these methods can reduce model size to 45% of original size and
accelerate training and test time by 55%, without losing recognition
accuracy.

Index Terms— dropout, dropout as pre-conditioner (DAP),
shrinking hidden layer, deep neural networks, LVCSR, DNN-HMM

1. INTRODUCTION

Recently, deep neural networks (DNN) have become the state-of-
the-art acoustic modelling in large vocabulary continuous speech
recognition (LVCSR) systems. Results in [1, 2, 3, 4, 5, 6] show
that the hybrid deep neural networks and hidden Markov models
(DNN/HMMs) can lead to significant performance improvement
over the conventional acoustic models using continuous density
HMMs based on Gaussian mixture models (GMMs). Neural net-
works revived in speech recognition due to a few pre-training algo-
rithms proposed in 2006, such as deep belief networks (DBN) [7]
and stacked auto-encoders [8]. Generally speaking, in all instances
of neural networks, the objective function is a highly non-convex
function of the parameters, where many distinct local minima co-
exist in the model parameter space. The role of unsupervised pre-
training is to guide learning towards basins of attraction of minima
that may yield better generalization for the unknown test data [9].
The generalization of model may be poor if training is trapped in
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any bad local minima or over-fitted to training data. Even with unsu-
pervised pre-training, deep neural networks with a huge number of
parameters still suffer from the serious problem of over-fitting, espe-
cially when training sets are small. In traditional back-propagation
(BP), weight decay regularization terms and early stopping are used
to control over-fitting for models with many parameters. In [10],
Hinton at el. present a dropout strategy by randomly omitting a
fraction of the hidden units in all layers for each training sample to
prevent the training from over-fitting, which gives big improvements
in the TIMIT corpus. In [11, 12] have also investigated dropout
training on small corpora. However, when dropout was used to
LVCSR tasks, it was likely to only increase training time [13]. As
opposed to other dropout work in the literature, we propose to use
dropout as pre-conditioner (DAP), which guides the parameter val-
ues into an appropriate range for further supervised fine-tuning. In
[14], it gave a preliminary trial of this idea but our study in this paper
is more thorough and it also has some main differences from [14].
For example, we propose to eliminate the necessity to perform the
time-consuming pre-training at the beginning and it only requires
about 20 or even fewer iterations of dropout based training, which
is far fewer than the previously reported work. As a result, the
total training time is significantly reduced and the procedure can be
applied to large scale speech recognition tasks within a reasonable
amount of training time.

On the other hand, the unsupervised pre-training may act as a
regularizer that increases the magnitude of weights [9]. But even
with pre-training, the fully connected DNNs after back-propagation
fine-tuning tend to be severely sparse, where a large portion of net-
work connections usually have extremely small weights. Results
in [15] show that the magnitude of 70% of weights is actually be-
low 0.1 in a well-trained 7-hidden-layer DNN model. In [15], the
sparseness of DNNs is explored to reduce model size but it fails to
expedite computation time of DNNs because the resultant sparse
matrices may leads to random memory accesses that dramatically
slow down CPU/GPU execution. Along this line, low-rank weight
matrix factorization in [16] and singular value decomposition of
weight matrices in [17] have been proposed to take advantage of
DNN sparseness for faster computation. In this work, we propose
a more straightforward way to explore DNN sparseness that results
in similar or even larger reduction in both model size and computa-
tion time. The motivation is that we have observed that connection
weights in upper layers of DNN tend to be much sparser than those
in the lower layers. The sparseness nature of DNN weights inspires
us to adopt a novel network structure named shrinking hidden layer
DNN (sDNN), where hidden layers gradually decrease in number of
hidden nodes from bottom to upper layers, to pursue smaller model
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size and faster computation.
In this paper, we evaluate effectiveness and efficiency of DAP

and sDNN on a 70-hour Mandarin transcription PSC task and the
309-hour Switchboard (SWB) task. Firstly, we investigate suitable
parameter configuration for DAP on the PSC task. Experiments
show that it can yield relative error reduction of 11.3% over the
traditional pre-trained DNNs. Secondly, we examine the proposed
methods for the larger SWB task, where we obtain 6.8% relative per-
formance improvement in WER. To the best of our knowledge, this
is the first successful application of dropout methods to DNN train-
ing for hundreds of hours LVCSR tasks where significant perfor-
mance improvement has been observed. Finally, we combine DAP
and sDNN for the SWB task, which leads to model reduction to 45%
of original size and computation speedup by more than 55%, without
sacrificing recognition accuracy.

2. DROPOUT AS PRE-CONDITIONER

Dropout is a powerful technology introduced in [10] for improv-
ing generalization capability of neural networks. During training,
dropout can reduce over-fitting by randomly omitting a fraction of
the hidden units in all layers on each training case to prevent co-
adaptation of hidden units. In our work, we investigate a new ap-
plication of dropout that can be regarded as pre-conditioner, putting
the parameter values in an appropriate range for further supervised
fine-tuning. Compared with conventional unsupervised pre-training
[7, 8, 18, 19], dropout as pre-conditioner (DAP) can be viewed as a
method of supervised pre-training. In this case, the training proce-
dure is composed of two stages: i) using dropout based fine-tuning
for certain number of iterations to generate an initial DNN; ii) simple
back-propagation (BP) to adjust the parameters of the DNN.

Considering a traditional feed-forward neural network with L
hidden layers, where we use l ∈ {1, ..., L} to index all hidden lay-
ers of the networks, y(l) denote the output vector of hidden layer l,
W(l) and b(l) for weights and biases of hidden layer l. The forward
procedure of dropout fine-tuning takes the following form:

r(l) ∼ Bernoulli(p) (1)

y(l+1) = f(r(l) ∗ y(l)W (l) + b(l)) (2)

where f(·) is the sigmoid activation function and r(l) is a vector of
Bernoulli random variables, each of which has probability of p being
0 and probability 1−p being 1, and we use ∗ to denote element-wise
multiplication of vectors. For backward procedure, the derivatives of
loss function are back-propagated through the networks with weights
update taking the following form:

∆wt+1 = mt+1∆wt − ε(1−mt+1)〈∇wL〉 (3)

mt =

{
t
T
mf + (1− t

T
)mi t < T

mf t ≥ T
(4)

Here, mi = 0.5,mf = 0.9, T = 10, ε = 2, and 〈∇wL〉 denotes
the average gradient of the objective function to the parameters of
current layer within one mini-batch, ε denotes the initial learning
rate, which is set to be much larger than that of traditional BP. Using
large learning rate allows a far more thorough search of the weight-
space [9], and enables the model parameters to jump from one basin
to another. But the randomly dropping out units (hidden and visi-
ble) in a neural network may add a particular type of noise to the
hidden unit activations during the forward pass of training [13]. Un-
fortunately, adding so much noise may slow down learning or even

Fig. 1. Illustration of sDNN with four hidden layers.

make it difficult to converge to a local optimum. That is why the
pure dropout-based fine-tuning seems to only increase training time
for LVCSR tasks. As a result, we propose to further adjust the neural
networks with traditional BP fine-tuning after a number of dropout
fine-tuning iterations. Note that neither the time-consuming RBM-
based pre-training nor the model averaging is used in our method.

3. DNN WITH SHRINKING HIDDEN LAYERS

The state-of-the-art DNN/HMMs systems often use feed-forward
neural networks where all hidden layers have the same number of
hidden nodes. In our work, we have observed that when DNN is
trained with many hidden layers, weights in the networks are very
sparse, which may become more apparent as we increase the num-
ber of hidden layers and hidden units. Results in [15] show that
magnitude of 70% of network connection weights in a well-trained
7-hidden-layer DNN is below 0.1. Meanwhile, small weights in
DNN make fairly weak contribution to the outputs of hidden layers
that are the weighted sums of the previous layer outputs followed by
monotonic nonlinear transformation. From this viewpoint, it can be
regarded as redundancies and thus can be abandoned for the purpose
of reducing model size and expediting computation.

On the other hand, DNN can be considered as a highly complex
nonlinear feature extractor, and all units are learnt to represent fea-
tures that capture higher order correlations in the original input data.
The lower layer units can be regarded as feature detectors to capture
raw features in training data. We can achieve more discriminative
and invariant features through many layers of nonlinear transforma-
tion. During this process, DNN has the ability to capture the useful
discriminative features and filter irrelevant information. Therefore,
we should be able to use fewer units in upper layers to simply model
structure and reserve critical information at the same time.

Based on the above reasons, we propose to use a special net-
work structure with shrinking hidden layers (sDNN), where hidden
layers gradually decrease in size from bottom to top. For example,
Fig. 1 illustrates a structure of 4-hidden-layer sDNN. By removing
redundancies in the weights, we can boost training efficiency by us-
ing smaller model size and less multiplications. For example, in our
work, it typically takes about 10 hours per epoch to train a 6-hidden-
layer DNN with 2,048 nodes per layer using a single GeForce 690
GPU. While using sDNN with shrinking structure of 2048-1792-
1536-1280-1024-768 can reduce the training time to 5.5 hours per
epoch with no loss of performance at all. Moreover, it can also speed
up computation of the posterior probabilities for decoding, which is
important for real-time speech recognition.
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Table 1. Performance comparison (CER in %) of various baseline
models in Mandarin PSC task.

MLE MPE
GMM-HMM 18.2 16.7
hidden layers 3 5

DNN (pre-train) 14.0 13.2
DNN (random) 14.8 14.2

4. EXPERIMENTS

In this paper, we evaluate the proposed DAP and sDNN on two
LVCSR tasks, namely 70-hour Mandarin transcription task and the
309-hour Switchboard task. Moreover, we also evaluate the combi-
nation of these two methods on the Switchboard task.

4.1. Mandarin transcription task

For the Mandarin transcription task, the training set contains 76,858
utterances (about 70 hours) from 1,539 speakers. Evaluation is mea-
sured in terms of character error rate (CER) on a separate 3-hour test
set, consisting of 3,720 utterances from other 50 speakers. In this
task, we investigate the appropriate parameters settings for DAP.

4.1.1. Baseline Systems

First of all, we build the baseline GMM/HMMs system based on the
standard tied-state cross-word tri-phone models. We use the regu-
lar 43-dimension features as input, including 39-dimension MFCC
features (static, first and second derivatives) and 4-dimension pitch
features. The features are pre-processed with cepstral mean nor-
malization (CMN) algorithm. The baseline models, including 3,969
tied HMM states of 30 Gaussian components, are first trained based
on maximum likelihood estimation (MLE) and then discrimina-
tively trained using minimum phone error (MPE) criterion. In the
second row of Table 1, we give performances of these baseline
GMM/HMMs systems. For the hybrid DNN/HMMs baseline sys-
tem, we use the best training configurations in [20]. The inputs
are concatenated from all consecutive frames within a long context
window of (5+1+5). DNN is first pre-trained using RBM-based
greedy layer-wise pre-training and then fine-tuned using state labels
obtained through forced alignment of MLE trained GMM/HMMs.
For fine-tuning, we use 10 training epochs of the whole training set.
An initial learning rate of 0.2 is kept constant for the first four epochs
and is halved for each of the remaining epochs. We have trained
DNN with 3 and 5 hidden layers with 2,048 nodes per layer. The
performances are listed in the fourth row of Table 1. For comparison,
we also trained the same DNN with Gaussian random initialization.
Results in Table 1 show that pre-trained DNNs can achieve signifi-
cant performance improvement over Gaussian random initialization
in this task.

4.1.2. Dropout as pre-conditioner

In this section, we study how to use DAP for LVCSR from three
different aspects.

1) Varying dropout probability and learning rate: We first use
different dropout probabilities and initial learning rates to fine-tune
a 3-hidden-layer Gaussian random initialized DNN, which contains
2,048 units in each hidden layer. For all experiments, the dropout
probability of input layer is 20%. Fig.2 illustrates that the classifi-
cation error curve converges faster as dropout probability decreases

Table 2. Performance comparison (CER in %) of DAP using differ-
ent dropout probabilities and initial learning rates in Mandarin PSC
task. (DNN contains 3 hidden layers and 2,048 nodes per layer)

Method dropout epochs
Hid omit=0.5 epoch 10 20 60

Learning rate=1 CER 13.4 13.1 12.4
Hid omit=0.3 epoch 10 20 40

Learning rate=1 CER 13.0 12.7 12.5
Hid omit=0.3 epoch 5 10 20

Learning rate=2 CER 13.2 12.9 12.3
Hid omit=0.1 epoch 5 10 20

Learning rate=1 CER 13.4 13.1 12.7

and initial learning rate increases. Table 2 shows that after 20 epochs
of dropout epochs and 10 epochs of standard BP, we can achieve the
lowest CER of 12.3% with hidden layer dropout probability of 30%
and initial learning rate of 2.
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Fig. 2. Held-out set frame classification error (%) curves of dif-
ferent hidden layer dropout probabilities and initial learning rate.
“hid omit0.3 lr1” denotes the dropout probability of all hidden lay-
ers is 30% and initial learning rate is 1.

2) Different initial methods : Secondly, we investigate different
initialization methods for dropout: i) model average; ii) pre-training.
In the original dropout work, DNN weights need to be multiplied by
(1-p) at test time, which can be treated as an effective way to per-
form model averaging. Therefore, we examine whether it needs to
perform model averaging before using the dropout fine-tuned DNNs
for BP. As seen from Table 3, without using model averaging we ob-
tain CER of 12.3%, which is slightly better than 12.4% of perform-
ing model averaging before standard BP. Moreover, it is not a good
idea to use the RBM-based pre-training prior to dropout based pre-
conditioner. These results suggest that it is not essential to use model
averaging after dropout and meanwhile the time-consuming RBM-
based pre-training process can be completely eliminated. From this
point, we may view dropout fine-tuning as a pre-conditioner to gen-
erate a good initialization for standard BP.

3) Varying hidden layer number: We use the best experimental
configuration obtained from above experiments to train DNN with
3-hidden-layer and 5-hidden-layer, which both contain 2,048 nodes
in each layer. Table 4 depicts that if 10 epochs of traditional BP are
executed after 20 iterations of dropout fine-tuning, we can achieve
9.6% relative error reduction over pre-trained DNN. Moreover, even
with only 10 epochs of dropout fine-tuning, we can still achieve 7.2%
relative error reduction.
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Table 3. Character error rates (CER in %) of DAP using different
initial methods in Mandarin PSC task. (DNN contains 3 hidden lay-
ers and 2,048 nodes per layer; PT for pre-training)

dropout epochs 5 10 20
no PT, no model average 13.2 12.9 12.3

no PT, model average 13.2 12.9 12.4
PT, no model average 13.2 12.8 12.6

Table 4. Character error rates (CER in %) of DAP with varying
number of hidden layers in Mandarin PSC task.

hidden layers 3 5
CER gain CER gain

Baseline: Pre-DNN 14.0 - 13.2 -
DAP epoch5 +BP 13.2 5.4% 12.7 3.7%
DAP epoch10+BP 12.9 8.1% 12.2 7.2%
DAP epoch20+BP 12.3 11.3% 11.9 9.6%

4.2. Switchboard task

For the Switchboard (SWB) task, the training data consists of 309-
hour Switchboard-I training set and 20-hour Call Home English data.
Evaluation is measured in terms of word error rate (WER) on the
NIST 2000 Hub5 evaluation set, denoted as Hub5e00. In the SWB
task, we first evaluate DAP for better accuracy and then consider to
combine DAP with sDNN for better efficiency.

4.2.1. Baseline systems

The baseline GMM/HMMs systems are standard tied-state cross-
word triphone system estimated with MLE and MPE criteria using
39-dimension PLP features (static, first and second derivatives) that
are pre-processed with cepstral mean and variance normalization
(CMVN) per conversation side. The HMM consists of 8,991 tied
states and 40 Gaussians per state. In decoding, we use a trigram LM
trained with all training transcripts. On the other hand, the baseline
hybrid DNN/HMMs system uses the same PLP features concate-
nated from 11-frame context window. The baseline DNN is com-
posed of six hidden layers and 2,048 units per layer, which is either
pre-trained by RBM or randomly initialized using Gaussian distribu-
tion. After that, The DNN hybrid system is fine-tuned by 10 epochs
of frame-level cross-entropy (CE) training, and followed by 2 epochs
of MMI-based sequence training. The baseline performance in Table
5 shows the CE-trained hybrid DNN/HMMs can give 34.4% relative
error reduction over the discriminatively trained GMM/HMMs on
Hub5e00 test set. The MMI sequence training yields word error rate
of 14.0%, indicating additional 13.6% relative error reduction.

4.2.2. Dropout as pre-conditioner and shrinking hidden layer

In this section, we first apply dropout as pre-conditioner (DAP)
based on the best configuration from the previous PSC task to ini-
tialize the baseline DNN for SWB. As shown in the first column
in Table 6, DAP significantly improves accuracy of the baseline
DNN. For example, if we run 20 epochs of DAP plus 10 epochs of
BP for the cross-entropy training, word error rate is improved from
16.2% to 15.1%, about 6.8% relative error reduction. After the MMI
sequence training[21], DAP yields the best accuracy of 13.4% in
WER, about 4.5% improvement from baseline 14.0% in WER.

Table 5. Word error rates (WER in %) of various baseline models in
Switchboard. (DNN: 6*2048)

model method Hub5e00
GMM- MLE 28.7
HMM MPE 24.7

CE (random) 16.6
DNN CE (pretrain) 16.2

+ Full Seq. Training 14.0

Table 6. WER (in %) of DAP and sDNN in Switchboard (Hub5e00).
(DNN:6*2048; sDNN1: 2*3072-2*2048-2*1024; sDNN2:2048-
1792-1536-1280-1024-768; sDNN3: 2*2048-2*1024-2*512)

DNN sDNN1 sDNN2 sDNN3
DNN (random) 16.6 16.5 16.8 16.8
Parameters (M) 38.4 32.0 17.4 13.0
Total Time (hr) 100 90 55 45

speedup - x1.1 x1.8 x2.2
DNN (pretrain) 16.2 16.1 16.3 16.4

DAP epoch5+BP 15.8 15.8 15.9 16.0
DAP epoch10+BP 15.4 15.4 15.4 15.8
DAP epoch20+BP 15.1 15.1 15.2 15.6
+Full Seq.Training 13.4 13.4 13.5 13.7

Next, we consider to combine DAP with shrinking DNN
(sDNN) structure for better computation efficiency. In this experi-
ment, we evaluate three different 6-layer sDNN structures: i) sDNN1
(2*3072-2*2048-2*1024): containing 32 millions of weights (about
83% of baseline DNN); ii) sDNN2 (2048-1792-1536-1280-1024-
768): containing 17.4 millions of weights (about 45.3% of baseline
DNN); iii) sDNN3 (2*2048-2*1024-2*512): containing 13 millions
of weights (about 34% of baseline DNN). Moreover, sDNN results
in much more efficient computation for both training and decod-
ing due to smaller number of matrix multiplications. For example,
sDNN2 (or sDNN3) leads to about 1.8 (or 2.2) times faster in both
training and testing. Meanwhile, as shown in Table 6, we can see that
sDNN structure can yield comparable recognition performance as
baseline DNN. For instance, sDNN2 accelerates computation time
by 1.8 times but it maintains similar recognition performance as the
baseline DNN, 16.3% in WER with pre-training and CE and 15.2%
in WER with DAP and 13.5% in WER after sequence training.
These numbers are pretty much the same (only 0.1% degradation)
as the baseline DNN, which is about twice bigger in size and also
twice slower in training and testing.

5. CONCLUSIONS

In this paper, we proposed to use dropout as pre-conditioner (DAP)
for better recognition performance in LVCSR. Experimental results
show that executing standard BP after a number of epochs of DAP
can lead to significant performance improvement compared with tra-
ditional pre-trained DNN. Meanwhile, we also investigated a new
network structure, called shrinking hidden layers, for DNNs as a
new way to explore DNN sparseness for better efficiency. Experi-
ments show that shrinking DNN structure can significantly reduce
model size and computation time without losing performance.
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