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ABSTRACT

Recently, the hybrid model combining deep neural network (DNN)
with context-dependent HMMs has achieved some dramatic gains
over the conventional GMM/HMM method in many speech recog-
nition tasks. In this paper, we study how to compete with the state-
of-the-art DNN/HMM method under the traditional GMM/HMM
framework. Instead of using DNN as acoustic model, we use DNN
as a front-end bottleneck (BN) feature extraction method to de-
correlate long feature vectors concatenated from several consecutive
speech frames. More importantly, we have proposed two novel
incoherent training methods to explicitly de-correlate BN features
in learning of DNN. The first method relies on minimizing coher-
ence of weight matrices in DNN while the second one attempts to
minimize correlation coefficients of BN features calculated in each
mini-batch data in DNN training. Experimental results on a 70-hr
Mandarin transcription task and the 309-hr Switchboard task have
shown that the traditional GMM/HMMs using BN features can yield
comparable performance as DNN/HMM. The proposed incoherent
training can produce 2-3% additional gain over the baseline BN
features. At last, the discriminatively trained GMM/HMMs using
incoherently trained BN features have consistently surpassed the
state-of-the-art DNN/HMMs in all evaluated tasks.

Index Terms— Deep neural networks (DNN), nonlinear dimen-
sionality reduction, bottleneck features, incoherent training, large
vocabulary continuous speech recognition (LVCSR)

1. INTRODUCTION

Recently, the hybrid acoustic model using deep neural network
(DNN) and hidden Markov models (HMMs) has been receiving
more and more research attention in speech recognition because it
has achieved some significant performance gain over the conven-
tional acoustic models using continuous density HMMs based on
Gaussian mixture models (GMM) in a variety of challenging large
vocabulary continuous speech recognition (LVCSR) tasks [1, 2, 3].
Comparing with the early neural network HMMs (NN/HMMs) in
1990’s, today’s DNN/HMMs make use of a much larger neural
network: (i) NN depth is largely increased by adding more hidden
layers; (ii) NN output layer is significantly expanded to directly
associate with a large number of tied states of context-dependent
triphone HMMs rather than a small number of monophone states.
Thanks to Hinton’s unsupervised generative pre-training based on
Restricted Boltzmann Machines (RBM) [4, 5, 6] and widely avail-
able general purpose GPUs, it is now possible to reliably learn

such a huge NN efficiently from a large amount of training data.
With these changes, it has been reported that DNN/HMM yields
an unprecedented error reduction (over 20-30%) in the well-known
Switchboard task [1]. Moreover, a recent experimental study in [7]
has suggested that this impressive performance gain of DNN/HMM
is almost entirely attributed to DNN’s input vectors that are con-
catenated from several consecutive speech frames within a relatively
long context window. Therefore, it becomes an interesting topic to
study how to take advantage of these concatenated long feature vec-
tors in the conventional GMM/HMM framework. However, unlike
NNs, GMMs are unable to directly model these long concatenated
feature vectors because these consecutive frames are highly corre-
lated. We need to use some dimensionality reduction methods to
de-correlate these long feature vectors before we can successfully
apply the conventional GMM/HMMs to modeling them. In [8], a set
of linear dimensionality reduction methods, such as PCA and LDA,
have been explored to de-correlate these long concatenated feature
vectors with no success, which suggests that other more advanced
methods should be utilized for this purpose.

In [9], it has proposed a quite flexible nonlinear dimensional-
ity reduction method based on neural networks by taking advantage
of DNN’s excellent capability of deeply mining high-dimensional
data. The method has been used for speech recognition under the
so-called bottleneck (BN) features [10, 11], where bottleneck fea-
tures are initially extracted using some shallow NNs. Recently, the
pre-trained DNNs are also used to extract bottleneck (BN) features
for speech recognition [12, 13]. The idea of bottleneck (BN) fea-
tures is to use a small hidden layer (the so-called bottleneck layer)
in the middle of a DNN. After DNN is well-trained, the activation
signals in the bottleneck layer can be used as a compact representa-
tion of the original high-dimensional inputs fed to the input layer of
DNN. The reason to make the bottleneck layer small is to ensure that
the activation signals in this layer are independent or uncorrelated.
As a result, the low-dimensional activation signals can be used as
new features to train the traditional GMM-based HMMs for acoustic
modeling. It has been demonstrated that bottleneck (BN) features
are effective in improving accuracy of speech recognition systems.
One more advantage of using bottleneck features is that many suc-
cessful techniques developed in the GMM-HMM framework can be
easily applied to further improve recognition performance, such as
discriminative training [14], fast adaptation and adaptive training.

In this paper, we first investigate how to use pre-trained DNNs
to extract bottleneck (BN) features for large vocabulary continuous
speech recognition (LVCSR). Contrary to some previous work in
[12], we have found that discriminatively trained GMM/HMMs us-



ing the bottleneck features extracted by DNNs have yielded com-
parable or even better recognition performance than the popular hy-
brid DNN/HMM models in several LVCSR tasks, including the well-
known Switchboard task. Moreover, along this line of research, we
have proposed two novel incoherent learning algorithms to train neu-
ral networks for extracting even better bottleneck features. The basic
idea of our incoherent learning algorithm is to introduce a regular-
ization term to the original objective function of DNN training. The
regularization term aims to directly measure correlation among all
activation signals in the bottleneck layer. In the first method, the
regularization term is defined based on coherence of weight matri-
ces in DNN. In the second method, we take advantage of the fact that
the bottleneck layer is linear so that the regularization term can be di-
rectly formulated based on correlation coefficients computed in each
mini-batch of training data. In this way, by optimizing a regularized
objective function, we may directly control correlation in the bottle-
neck layer to derive better de-correlated BN features, which are even
more suitable for GMM/HMMs with diagonal covariance matrices.
Experimental results have shown that the proposed incoherent train-
ing methods have produced 2-3% further gain over the baseline BN
features and the discriminatively trained GMM/HMM models us-
ing incoherently trained BN features have consistently surpassed the
popular hybrid DNN-HMM methods in all evaluated LVCSR tasks.

2. BOTTLENECK FEATURES EXTRACTION

In this section, we briefly review the traditional way to use DNNs to
extract bottleneck (BN) features as in [9, 10, 12]. As shown in Fig.
1, it uses a specially structured DNN, which includes a small bot-
tleneck layer in the middle to control information flowing from the
input layer of DNN to the output layer. Since the number of hidden
nodes in the bottleneck layer is normally much smaller than the other
layers, DNN training will force activation signals in the bottleneck
layers to form as a low-dimensional compact representation of the
original inputs as long as DNN is well trained to generate low frame
classification error rate in the output layer. This can be viewed as an
effective nonlinear dimensionality reduction to de-correlate the con-
catenated long input features to DNNs so that they can be directly
used as new features to train GMM-HMMs as usual.

Fig. 1. Bottleneck features extraction architecture.

The training of the bottleneck DNN starts from RBM-based pre-
training (see [9] for details). After pre-training, the bottleneck DNN
is fine-tuned with the standard error back-propagation (BP) proce-

dure to optimize an objective function. Normally, the objective func-
tion, D(0), is defined as the total negative log posterior probability
of all T training samples O = {o(t)} given their ground-truth state
labels S = {s(t)}, i.e.

D(0) = −
T∑

t=1

logP (s(t)|o(t)) . (1)

The derivatives of D(0) can be easily derived as in [2, 3, 15].

3. INCOHERENT TRAINING OF DEEP NEURAL
NETWORKS

In the above training process based on eq.(1), BN features are im-
plicitly de-correlated by making the BN layer small. However, a
small BN layer typically leads to lower frame classification rate in
the output layer of the bottleneck DNN than regular DNNs. This
indicates certain information has been lost in the narrow BN layer.
On the other hand, as we increase the size of the bottleneck layer,
the frame classification rate in the output layer typically improves
accordingly but the activation signals in the BN layers may become
more and more correlated with each other. As a result, they may not
be good anymore for the following GMM/HMMs.

For the purpose of more effective bottleneck features extraction,
in this paper, we propose two novel incoherent training methods for
deep neural networks, where correlation between activation signals
in the bottleneck layer is explicitly modeled and optimized when the
bottleneck DNN is learned. The basic idea is to introduce a new
regularization term into the original objective function in eq.(1) to
derive a new regularized objective function for DNN training as fol-
lows:

D(1) = D(0) + α · D(reg) , (2)

where D(0) is the same as in eq.(1) and D(reg) denotes a new reg-
ularization term to measure correlation in the bottleneck layer, and
α is a control parameter to balance D(0) and D(reg) in learning. To
some extent, the regularization term can be considered as a kind of
constraint for DNN parameters estimation in the BP procedure so
that the resultant BN features can be explicitly de-correlated dur-
ing the BP training of DNNs. This becomes even more important
when we use a slightly bigger bottleneck layer. In the following, we
consider two different methods to construct the regularization term
for our incoherent training by leveraging coherence of weight matrix
and correlation coefficients computed with one mini-batch of train-
ing data.

3.1. Minimizing coherence of weight matrix in DNN

Coherence of a matrix M is defined as the maximum cosine value of
angles between all normalized column vectors of M. If we let mi

and mj be any two column vectors of M, coherence can be written
as max

i 6=j

∣∣∣ mi·mj

‖mi‖·‖mj‖

∣∣∣. The concept of coherence has been widely

used for dictionary learning in sparse representations of signals [16].
Intuitively, a matrix with smaller coherent value indicates all of its
column vectors are less similar.

Since we can view the activation signals in the bottleneck layer
as transformation from input vectors through several sigmoid layers
with different weight matrices. If we can manage to reduce coher-
ence of all these weight matrices, we may indirectly de-correlate
signals in the BN layer. Therefore, we propose to construct the regu-
larization term, D(reg), as maximum coherence of these weight ma-
trices. In practice, we use softmax to replace the above max to derive



a differentiable D(reg) only for the weight matrix right before the
BN layer (assumed to contain N columns, wi, 1 ≤ i ≤ N ) as fol-
lows:

D(reg) = log

(
1

M

N∑
i=1

N∑
j=i+1

exp{β · gij}

) 1
β

(3)

where β > 1 is a control parameter used for softmax, N is total num-
ber of hidden nodes in BN layer, M = N(N−1)

2
, and gij denotes the

absolute value of cosine of angle between any two column vectors
in weight matrix:

gij =
|wi ·wj |

‖wi‖ · ‖wj‖
. (4)

Therefore, the gradients of D(reg) with respect to each column
of weight matrix, wk, (k = 1, · · · , N) can be calculated as:

∂D(reg)

∂wk
=

N∑
j 6=k

[
exp{β · gkj} ·

∂gkj
∂wk

]
N∑
i=1

N∑
j=i+1

exp{β · gij}

=

N∑
j=1

γkjgkj

[
wj

wk ·wj
− wk

wk ·wk

]
= Ŵ · ĝk

(5)

where Ŵ denotes a normalized weight matrix composed of column
vectors,

[
wj

wk·wj
− wk

wk·wk

]
(j = 1, · · · , N), and ĝk is a scaled

vector consisting of elements γkj · gkj (j = 1, · · · , N) with γkj =
exp{β·gkj}∑N

i=1

∑N
j=i+1 exp{β·gij}

.

In BP learning, the α-scaled gradients as computed from eq.(2)
are used to update weight matrices. Note the above D(reg) can be
easily generalized to include all weight matrices in the whole DNN
not just the one right before the BN layer.

3.2. Minimizing correlation coefficients of data in each mini-
batch

Here we consider to construct the regularization term, D(reg), based
on correlation coefficients of data. It is possible because the BN layer
can be viewed as a linear layer since outputs of hidden nodes in the
BN layer are directly used as BN features without using the sigmoid
function. As shown in Fig. 1, the BN features, Y, can be viewed as a
linear transformation of output signals, X, from the previous hidden
layer as: Y = W>X+ b, where W is the bottleneck layer weight
matrix and b is a bias vector. Obviously, the relationship between the
covariance matrix of X and that of Y can be expressed as: CY =
W>CXW. Therefore, we can define a new regularization term
using correlation coefficients of Y calculated within each mini-batch
of training data in the BP procedure. In this case, D(reg) has the
exactly same form as in eq.(3) except gij is computed as a correlation
coefficient:

gij =

∣∣(wi)
>CXwj

∣∣√
(wi)>CXwi ·

√
(wj)>CXwj

. (6)

Similarly, the gradients of D(reg) with respect to each column

of weight matrix can be computed as follows:

∂D(reg)

∂wk
=

N∑
j 6=k

[
exp{β · gkj} ·

∂gkj
∂wk

]
N∑
i=1

N∑
j=i+1

exp{β · gij}

, (7)

where
∂gkj
∂wk

= gkj

[
CXwj

(wk)>CXwj
− CXwk

(wk)>CXwk

]
for k =

1, · · · , N . In the BP-based learning, CX is first computed based
on each mini-batch of training data and then the above derivatives
are calculated accordingly to update the weight matrix before the
BN layer. Note that this method can only be used for a linear layer
where CY can be simply derived from CX.

4. EXPERIMENTS

In this work, we have evaluated the proposed incoherent training
methods on two LVCSR tasks, namely an in-house 70-hour Man-
darin transcription task and the 309-hour Switchboard task.

4.1. Mandarin transcription task

For the Mandarin transcription task, the training set contains 76,858
utterances (about 70 hours) from 1,539 speakers. The recognition
performance is evaluated on a separate 3-hour test set, consisting of
3,720 utterances from other 50 speakers. In this task, we use a large
trigram language model (LM) that is separately trained from a large
Chinese text corpus. We evaluate recognition performance in the
form of character error rate (CER) for this Chinese task.

4.1.1. Baseline systems

First of all, we build the baseline system based on the standard
tied-state cross-word tri-phone GMM/HMMs using the regular
43-dimension features, that includes 39-dimension MFCC features
(static, first and second derivatives) and 4-dimension pitch features.
Prior to model training, feature vectors are pre-processed with cep-
stral mean normalization (CMN). The baseline models are first
trained based on maximum likelihood estimation (MLE), including
3,978 tied states and 30 Gaussian components per state. After that,
GMM-HMMs are discriminatively learned based on the minimum
phone error (MPE) criterion. In the first row of Table 1, we give
recognition performance of these two baseline GMM/HMMs using
MFCCs. Next, based on the best DNN training configuration in [8],
we have trained a 5-hidden-layer CD-DNN-HMMs with 2,048 nodes
in each hidden layer to compute the posterior probability of all tied
states used in the above baseline GMM-HMMs. In DNN-HMM, we
use long concatenated feature vectors, stacking from all consecutive
frames within a context window (5+1+5), as DNN’s inputs. In BP,
the mini-batch size is set to 1,024 samples for the stochastic gradient
descend. The recognition performance is listed in the second row
of Table 1 for comparison. We can see that CD-DNN-HMM yields
a significant performance improvement, i.e., 21.6% relative error
reductions, over the best discriminatively trained GMM-HMMs.

For the baseline BN features, we have trained a 5-hidden-layer
bottleneck DNN. We place a bottleneck layer in the middle, which
contains 43 hidden nodes for this task. After BP learning, the activa-
tion signals in the bottleneck layer are directly used as BN features
to train another set of GMM/HMM without any post-processing.
The recognition performance of BN-based GMM/HMM is listed



Table 1. Performance comparison (CER in %) of various models in
the Mandarin task. (BN-GMM-HMM: GMM-HMMs using bottle-
neck features extracted by DNN)

MLE MPE
GMM-HMM 18.2 16.7

CD-DNN-HMM 13.1
BN-GMM-HMM 13.6 12.2

Table 2. Performance comparison (CER in %) of GMM/HMMs us-
ing different bottleneck features in Mandarin task.

MLE MPE
Baseline BN 13.6 12.2

Weight-matrix Incoherent BN 13.3 -
Mini-batch-data Incoherent BN 13.2 12.0

in the last row of Table 1. The results show that performance of
MLE-trained GMM/HMMs using BN features (BN-GMM-HMMs)
is comparable to that of the state-of-the-art context-dependent
DNN/HMM method. After MPE-based discriminative training,
it even surpasses DNN/HMM (12.2% over 13.1% in CER).

4.1.2. Incoherently trained BN features

The performance comparison between the baseline BN features and
incoherently trained BN features based on matrix coherence (as in
section 3.1) is given in Table 2. The results show that the bottleneck
features can benefit from weight matrix based incoherent training.
For MLE-based GMM-HMM, further performance improvement is
observed, i.e. 2.2% relative error reductions over baseline BN fea-
tures. Similarly, we have evaluated another incoherent training based
on mini-batch data (as in section 3.2). Results in Table 2 show that
the MLE-trained GMM-HMMs using incoherent training based on
mini-batch data give 3.0% relative error reductions over baseline
BN features, which is slightly better than the first one using weight
matrix based incoherent training. At last, we have discriminatively
trained GMM-HMMs based on MPE using incoherently-trained BN
features based on mini-batch data. The recognition performance in
Table 2 indicates that it has yielded 12.0% in CER, about 1.7% rela-
tive error reduction over the same MPE-trained GMM-HMM using
the baseline BN features.

4.2. Switchboard task

For the Switchboard task, the training data consists of 300-hour
Switchboard-I training set and 20-hour Call Home English data. We
use NIST 1998 and 2001 Hub5 evaluation sets, denoted as Hub5e98
and Hub5e01 respectively, to evaluate recognition performance.

4.2.1. Baseline systems

The baseline system is a standard tied-state cross-word triphone
GMM/HMMs trained with both MLE and MPE criterion using
39-dimension PLP features (static, first and second derivatives) that
are pre-processed with cepstral mean and variance normalization
(CMVN) per conversation side. GMM/HMM consists of 8,991 tied
states and 40 Gaussians per state. In decoding, we use a tri-gram
LM trained with all training transcripts. In the first row of Table
3, we give recognition performance of two baseline GMM/HMMs,

which is comparable with the best single-pass performance reported
under the same training condition in [17].

Table 3. Performance Comparison (WER in %) of various baseline
models in Switchboard task.

Acoustic Models Hub5e98 Hub5e01
MLE MPE MLE MPE

GMM-HMMs 46.6 43.4 35.4 32.8
CD-DNN-HMMs 31.2 23.7
BN-GMM-HMMs 34.3 31.3 26.0 23.2

Next, we have trained a 5-hidden-layer CD-DNN-HMMs with
2,048 nodes in each hidden layer. The recognition performance
is listed in the second row of Table 3. We can see context-
dependent DNN/HMM yields 28.1% and 27.7% relative error reduc-
tions over the discriminatively trained GMM/HMMs on Hub5e98
and Hub5e01 test sets respectively. These results are similar to
[1, 3]. Furthermore, recognition performance of GMM/HMM using
39-dimension baseline BN features is also listed in the last row
of Table 3, which show that MPE-trained GMM/HMM using BN
features yield comparable performance as the state-of-the-art CD-
DNN-HMMs. These results are not the same as [12]. We have
found that adjusting acoustic score factor in Viterbi decoding helps
to boost performance for all BN-based systems.

4.2.2. Incoherently trained BN features for SWD

In Table 4, we have listed performance comparison of GMM/HMMs
using different bottleneck features, including the baseline BN and
two incoherently trained BN. Results have shown that incoherent
training can consistently lead to about 2% further performance im-
provement over the baseline BN on two different evaluation sets.

Table 4. Performance (WER in %) comparison of GMM-HMMs
using different BN features in Switchboard task.

BN Feature Hub5e98 Hub5e01
Systems MLE MPE MLE MPE

Baseline BN 34.3 31.3 26.0 23.2
Weight-matrix 34.0 - 25.7 -Incoherent BN

Mini-batch-data 33.8 31.0 25.6 22.8Incoherent BN

5. CONCLUSIONS

In this paper, we have proposed two new incoherent training meth-
ods for deep neural networks to de-correlate bottleneck features. Ex-
perimental results have shown that the incoherent training methods
yield consistent performance gain over the traditional bottleneck fea-
ture extraction methods. More importantly, we have demonstrated
that discriminatively trained GMM/HMMs using the incoherently
trained bottleneck features have consistently outperformed the state-
of-the-art DNN/HMM method in all evaluated speech recognition
tasks, including the challenging Switchboard task.
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