
Rectified Linear Neural Networks with Tied-Scalar Regularization for LVCSR

Shiliang Zhang1, Hui Jiang2, Si Wei1, Li-Rong Dai1

1National Engineering Laboratory for Speech and Language Information Processing
University of Science and Technology of China, Hefei, Anhui, P. R. China

2 Department of Electrical Engineering and Computer Science
York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada

zsl2008@mail.ustc.edu.cn, hj@cse.yorku.ca, siwei@iflytek.com, lrdai@ustc.edu.cn

Abstract
It is known that rectified linear deep neural networks

(RL-DNNs) can consistently outperform the conventional pre-
trained sigmoid DNNs even with a random initialization. In this
paper, we present another interesting and useful property of RL-
DNNs that we can learn RL-DNNs with a very large batch size
in stochastic gradient descent (SGD). Therefore, the SGD learn-
ing can be easily parallelized among multiple computing units
for much better training efficiency. Moreover, we also propose
a tied-scalar regularization technique to make the large-batch
SGD learning of RL-DNNs more stable. Experimental results
on the 309-hour Switchboard (SWB) task have shown that we
can train RL-DNNs using batch sizes about 100 times larger
than those used in the previous work, thus the learning of RL-
DNNs can be accelerated by over 10 times when 8 GPUs are
used. More importantly, we have achieved a word error rate
of 13.8% with a 6-hidden-layer RL-DNN trained by the frame-
level cross-entropy criterion with the tied-scalar regularization.
To our knowledge, this is the best reported performance on this
task under the same experimental settings.
Index Terms: rectified linear units, RL-DNN, LVCSR, tied-
scalar regularization

1. Introduction
Recently, neural networks have revived as a popular model in
machine learning under the name of deep learning. Deep learn-
ing aims at learning neural networks with very deep architec-
ture, such as deep neural networks (DNNs), which significantly
outperform other machine learning methods and yield the state
of the art performance in many real-world applications, such as
speech recognition, computer vision and many others.

As the basic building block of DNNs, each neuron (hidden
node) imposes a nonlinear activation function from its input to
output. Traditionally, the standard logistic sigmoid and hyper-
bolic tangent functions are widely used in the neural networks
literature. More recently, in [1, 2, 3], it has proposed to use a
simpler nonlinear neuron, namely rectified linear unit (ReLU),
which takes a rectified linear function as its activation function
from input to output. In many large scale real-world applica-
tions [4, 5, 6, 7, 8], ReLU based DNNs (RL-DNN) have demon-
strated several major advantages over the traditional DNNs us-
ing logistic sigmoid or hyperbolic functions [5]. Firstly, RL-
DNNs normally yield better recognition performance than the

This work was partially supported by the National Nature Science
Foundation of China (Grant No. 61273264) and the electronic informa-
tion industry development fund of China (Grant No. 2013-472).

regular sigmoid DNNs. Secondly, the training speed of RL-
DNNs is much faster than that of the regular sigmoid DNNs
because the learning process of RL-DNNs seems to converge
faster. Next, rectified linear units generate exact zeros when in-
puts are not aligned with the internal weights in the model, as
opposed to the sigmoid units that produce small noisy values.
As a result, a learned RL-DNN is much sparser than its coun-
terpart using logistic sigmoid units. The increased sparsity is
believed to improve model generalization [3]. Moreover, based
on the experimental observations in [4, 5], it has been widely
conjectured that RL-DNNs are much easier to learn since the
piece-wise linear property arising from ReLUs may be benefi-
cial from the optimization perspectives.

As we know, the learning objective functions of DNNs are
always highly non-convex, where many distinct local minima
co-exist in the model parameter space. Therefore, the stochas-
tic gradient descent (SGD) algorithm [9, 10, 11] is usually used
to optimize the non-convex objective function to learn DNNs,
which is believed to help the learning to escape from poor local
optima. Unfortunately, using small mini-batches in SGD be-
comes a major computation bottleneck to parallelize the DNN
learning among multiple GPUs or to distribute the learning to
large CPU clusters.

In this paper, we have observed an interesting and useful
property of RL-DNNs that we can learn RL-DNNs reliably us-
ing a very large mini-batch size, even up to 100k (102400),
which is about 100 times larger than those used in the previous
work. Therefore, it can largely overcome the major hurdle in the
parallel training of DNNs since the learning can be easily paral-
lelized by splitting each large “mini-batch” into multiple com-
puting units for much faster training turnaround. As shown in
our experiments on the Switchboard task, we can dramatically
speedup the RL-DNN training by more than 10 times when us-
ing 8 GPUs in the parallel training. In our large mini-batch SGD
training, we still need to carefully tune the learning rate as usual
for the best possible performance. In this paper, we first give a
heuristic but useful strategy to adjust the learning rates accord-
ing to the used mini-batch size. More importantly, in order to
make the large mini-batch training of RL-DNNs reliable and ef-
fective, we have proposed a new tied-scalar regularization tech-
nique, which can yield a significant performance improvement
over the conventional methods. For example, we have achieved
a word error rate of 13.8% on the 309-hour Switchboard (SWB)
task with a 6-hidden layer RL-DNN that takes filter bank fea-
tures (FBK) as input and is trained with the frame-level cross-
entropy criterion, which is about 11.5% relative performance
improvement over the conventional pre-trained sigmoid DNNs.
To the best of our knowledge, this is the best reported perfor-



mance on this task under comparable experimental settings.

2. Preliminaries: RL-DNNs
The structure of DNNs is a conventional multi-layer perceptron
with many hidden layers. Given an observation vector X as
input, an (L + 1)-layer DNN, consisting of L hidden nonlin-
ear layers, ` = 1...L, and one output layer (` = L + 1), is
used to model the posterior probability Pr(s|X) of each output
target, s, for classification. Assume that it contains N` hid-
den nodes in the `-th layer. In RL-DNNs, each hidden node
adopts the so-called rectified linear activation function, i.e.,
f(x) = max(0, x), to compute from the linear activations of
the current layer, a`, to its outputs, h`, which are in turn fed
to the next layer as input. Assume the input is h0 = X , an
RL-DNN works as follows:

a` = W`h`−1 + b`, (1 ≤ ` ≤ L+ 1), (1)

h` = f
(
a`
)
= max

(
0,a`

)
, (1 ≤ ` ≤ L), (2)

where W` and b` represent the weight matrix and the bias vec-
tor for layer `. For classification, the output layer uses softmax
to compute posterior probabilities as follows:

ys = hL+1
s = Pr(s|X) = softmaxs

(
aL+1

)
, (3)

where ys denotes the s-th element of the output vector y.
The following cross-entropy (CE) error objective function

is used to learn RL-DNNs in speech recognition:

F(Θ) = −
R∑

r=1

log
(
softmaxsr (a

L+1)
)

= −
R∑

r=1

log Pr(sr|Xr),

(4)

where Θ = {W`,b` | ` = 1, 2, · · · , L + 1} denotes all con-
nection weight matrices in DNN, and sr denotes the target label
of input feature vectorXr . Therefore, the learning of RL-DNNs
can be formulated as the following general optimization prob-
lem:

Θ∗ = arg min
Θ∈RN

F(Θ). (5)

The above optimization problem is generally regarded
as being difficult to solve since it is non-convex and high-
dimensional.

2.1. Learning RL-DNNs with SGD

We usually use the mini-batch SGD algorithm to solve the op-
timization problem in eq.(5) to learn RL-DNNs. For exam-
ple, a widely used batch size is 1024 for speech recognition
on many tasks. Unfortunately, it becomes difficult to achieve an
effective parallelization for the DNN training with such a small
mini-batch because of the communication overhead problem.
The asynchronous stochastic gradient descent (ASGD) in [12]
is used to parallelize the DNN training among multiple GPUs.
However, it needs to use even smaller mini-batch size in early
iterations of ASGD for a good convergence, which significantly
limits the parallelization speedup and can not take advantage of
the full computing sources in each GPU.

In this work, we have found that RL-DNNs can be learned
with a very large batch size. We have evaluated the perfor-
mance of RL-DNNs trained using various batch sizes, such as

1k (1024), 4k (4096), 10k (10240), 20k (20480), 50k (51200)
and 100k (102400). In these experiments, we may have to adjust
the learning schedule accordingly for different mini-batch sizes.
The rule of thumb is that a small learning rate is used for a small
mini-batch size while a larger learning rate for a large batch
size. This is due to the fact that the number of model updates
per epoch is inversely proportional to the mini-batch size so that
we need to increase the learning rates for larger mini-batch sizes
to ensure comparable model updates per epoch. Based on our
experiments, we have found that the initial learning rate should
be proportional to the used mini-batch size as follows:

lr1
lr2

=
minibatchSize1
minibatchSize2

(6)

Based on our previous work, when we use a normal mini-
batch size of 1k, we use an initial learning rate of 0.02. For other
larger mini-batch sizes, we can use eq.(6) to proportionally set
the initial learning rates. For example, we should set the initial
learning rate to 0.4 for the mini-batch size of 20k. After the
initial learning rate is set, the learning rate is kept fixed as long
as the frame classification accuracy on a cross-validation (CV)
set improves by at least 0.5%. After that, we continue six more
epochs of the SGD training, where the learning rate is halved
after each epoch.

Another important trick to train RL-DNNs is that we must
use a much smaller initial weights. In our experiments, all
weights are initialized based on the normalized uniform ran-
dom initialization in [13]. As the rectifier linear function is un-
bounded, the activations of hidden units might grow without
limit. To handle this potential numerical problem, we adopt a
slight modification to the normalized initialization method [13]
by multiplying a constant factor to control the dynamic range of
the initial weights as follows:

W ∼ [−β ·
√
6√

ni + ni+1
, β ·

√
6√

ni + ni+1
] (7)

where ni is the number of units in the i-th layer and β is set to
0.5 in all of our experiments.

3. RL-DNN with Tied-Scalar
Regularization

In section 2, we have shown that RL-DNNs can be trained by
SGD with a very large mini-batch size. In [14], it mentions
that each update of model weights should be about 10−3 of the
weights in order of magnitude. When we use larger learning
rates for the larger mini-batch sizes in SGD, we need to care-
fully tune the learning rate as described in section 2.1. In order
to make the learning process more reliable, we further propose a
new tied-scalar regularization method, which is found to be par-
ticularly useful for learning RL-DNNs with larger mini-batch
sizes. Our tied-scalar idea is inspired by the L2 norm regular-
ization used in [15], which makes it possible to learn DNNs
with a very large initial learning rate. As for L2 norm regu-
larization, it uses a preset upper bound to limit the L2 norm
of all fan-in weight vectors in each hidden layer. After each
weight update, we renormalize the norm of each weight vec-
tor to ensure it is not out of the bound. Unfortunately, the L2

norms of DNN weight vectors vary significantly in the dynamic
range from one data set to another. For every new task, we
may need to conduct many experiments to manually search for
the suitable L2 norm bound. Therefore, the main idea of our
proposed tied-scalar regularization is to automatically learn the



L2 norm bound from data. In the tied-scalar regularization, we
constrain the L2 norm of each fan-in weight vector to each in-
dividual hidden node of DNNs to be less than 1, ‖w`

k‖ ≤ 1
(w`

k denotes k-th row vector of the weight matrix W` in the
`-th hidden layer). And all weight vectors in each hidden layer
share a common scalar, α` > 0, which is used to adjust weight
vectors to proper lengths. The tied-scalars are all learned in the
back-propagation in the same way as other weights. Since α` is
tied to many different weight vectors in DNNs, as we observed
in our experiments, it never diverges in the learning and always
converges to a reasonable number.

In other words, the proposed RL-DNNs with tied-scalar
regularization can be expressed as the following form:

a` = α`W`h`−1 + b` (‖w`
k‖ ≤ 1 ∀k, `) (8)

h` = f
(
a`
)
= max

(
0,a`

)
. (9)

We can use the chain rule to derive the derivatives for the
tied-scalars, which takes the following form:

∂F
∂α`

=

N∑̀
j=1

∂F
∂h`

j

∂h`
j

∂α`
=

N∑̀
j=1

e`j(w
`
j · h`−1) (10)

where e`j denotes for the error signal computed for the j-th hid-
den node in the layer `, N` denotes the number of the hidden
units in `-th layer. As for the initialization, we use the maximum
L2 norm of all (randomly) initial weight vectors in each layer to
initialize all α`, and all weight vectors in each layer are normal-
ized by α` to satisfy the norm constraints: ‖w`

k‖ ≤ 1 (∀k, `).
During the SGD learning, we need to constrain theL2 norm

of each weight vector if its norm exceeds 1 after each update:

w`
k ←

w`
k

‖w`
k‖

if ‖w`
k‖ > 1 (11)

The proposed tied-scalar regularization can prevent all
DNN weights from growing too large, which makes it suitable
for learning RL-DNNs with a very large initial learning rate for
those larger mini-batch sizes.

4. Experiments
In this paper, we have examine how to training RL-DNNs with
large mini-batch sizes and further investigate the proposed tied-
scalar regularization on the Switchboard (SWB) database. The
SWB training data consists of 309-hour Switchboard-I train-
ing database and 20-hour Call Home English data. We divide
the whole training data into two sets: training set and cross-
validation set. The training set contains 99.5% training data,
and the cross-validation set contains the remaining 0.5%. Eval-
uation is performed in terms of word error rate (WER) on the
NIST 2000 Hub5 evaluation set (containing 1831 utterances),
denoted as Hub5e00.

4.1. Baseline systems (GMM/HMM and sigmoid DNNs)

The GMM/HMM baseline is a standard tied-state cross-word
tri-phone system, using the 39-dimension PLP features (static,
first and second derivatives) as feature and Gaussian mixture
models (GMM) as acoustic model, which is estimated with the
maximum likelihood estimation (MLE) and then discrimina-
tively trained based on the minimum phone error (MPE) cri-
terion [16]. Before the model training, all feature vectors are

Table 1: Word error rates (WER in %) of various baseline sys-
tems in Switchboard.

model method Hub5e00
GMM- MLE 28.7
HMM MPE 24.7

PLP
5*2048 16.5

DNN- 6*2048 16.2
HMM

FBK
5*2048 16.1
6*2048 15.6

pre-processed with the cepstral mean and variance normaliza-
tion (CMVN) per conversation side. The final hidden Markov
model (HMM) consists of 8,991 tied states and 40 Gaussian
components per state. In the decoding, we use a trigram lan-
guage model (LM) that is trained by using 3 million words
from the training transcripts and another 11 million words of
the Fisher English Part 1 transcripts. The performance of the
baseline GMM/HMMs systems is listed in Table 1.

For the baseline DNN systems, we use the logistic sigmoid
function as the activation function for all hidden nodes. We fol-
low the same training procedure as described in [17, 18, 19, 20]
to train the conventional context dependent DNN/HMM with
the tied-triphone state alignment obtained from the above MLE
trained GMM/HMMs baseline system. The input vectors are
either 39-dimension PLP or 123-dimension mel-warped filter-
bank (FBK) features concatenated from all consecutive frames
within a long context window of (5+1+5). The sigmoid DNN
is first pre-trained using the RBM-based layer-wise pre-training
and then fine-tuned with 10 epochs of frame-level cross-entropy
(CE) training. In the fine-tuning, we used SGD with mini-
batches of 1024 (1k) frames. The initial learning rate is set to
0.2. We have trained sigmoid DNNs with 5 and 6 hidden layers
and 2,048 nodes per layer. The performance of these baseline
DNN/HMMs systems is also listed in Table 1 for comparison.

4.2. RL-DNNs

We train RL-DNNs (with 5 or 6 hidden layers of 2048 ReLU
nodes per layer) using the conventional back-propagation (BP)
with varying batch sizes, being 1k (1024), 10k (10240), 20k
(20480), 50k (51200) and 100k (102400). The learning pa-
rameters of RL-DNNs are similar to those of sigmoid DNNs.
The learning schedule of RL-DNNs is described in section 2.1.
Experimental results in Table 2 show that we can still achieve
very competitive recognition performance when we use much
larger mini-batch sizes to train RL-DNNs. For instance, the
recognition performance of the 6-hidden-layer RL-DNN only
changes from 15.0% and 15.5% when the mini-batch size is
increased from 1k to 100k. Moreover, the learning curves in
Figure 1 also indicate that the learning of RL-DNNs converges
very well for a wide range of mini-batch sizes. Particularly, for
a 6-hidden-layer RL-DNN trained using a batch size of 10k, we
have achieved 15.0% in WER, a 1.2% absolute error reduction
over the baseline pre-trained sigmoid DNNs in Table 1. An-
other advantage of using large batch size is that the training
can be easily parallelized among multiple computing units to
significantly improve training efficiency. In our experiments,
we have implemented a parallel scheme to train a 6-hidden-
layer RL-DNN with a mini-batch size of 8k using a system of 4
GPUs (NVIDIA 750 Tesla K20). It has shown that the training
speed can be expedited by about 3 times by simply distribut-



Table 2: Word error rates (WER in %) in the Switchboard of
RL-DNNs learned using PLP features with various batch sizes
and training speedup factors when 8 GPUs are used in parallel.

RL-DNN
batch size 5*2048 6*2048

WER(%) speedup WER(%) speedup
1k 15.9 - 15.4 -

10k 15.6 x5.4 15.0 x5.4
20k 15.5 x8.2 15.3 x8.4
50k 15.7 x11.2 15.3 x11.7

100k 16.0 x12.2 15.5 x12.7

%
	
  C
la
ss
ifi
ca
?o

n	
  
Er
ro
r

40

52.5

65

77.5

90

#Chunk

0 37.5 75 112.5 150

Sigmoid-­‐DNN	
  batch=1k
RL-­‐DNN	
  batch=1k
RL-­‐DNN	
  batch=10k
RL-­‐DNN	
  batch=100k

%
	
  C
la
ss
ifi
ca
?o

n	
  
Er
ro
r

50

60

70

80

90

#Chunk

0 37.5 75 112.5 150

Sigmoidd-­‐DNN	
  batch=1k
RL-­‐DNN	
  batch=1k
RL-­‐DNN	
  batch=10k
RL-­‐DNN	
  batch=100k

Figure 1: Comparison of various learning curves of sigmoid
DNNs and RL-DNNs (6 hidden layers of 2048 neurons) on the
Switchboard task using different batch sizes (1k, 10k and 100k);
The left figure is for training data and the right figure for the
0.5% held-out development set.

ing the gradient computation of each mini-batch into 4 GPUs.
In this case, each epoch takes about 1.6 hours, consisting of
1.3 hours of computation in 4 GPUs and 0.3 hours of commu-
nication overhead to collect gradients and redistribute the up-
dated models among 4 GPUs. This is about 4.6 times faster
than the baseline system trained with a mini-batch of 1k. The
parallel training method can be easily extended to even more
GPUs with even larger batch sizes. The good thing is that the
larger the mini-batch size is, the less communication overhead
is involved. In Table 2, we have listed all training speedup fac-
tors for each case based on a simulation environment of 8 GPUs
[21, 22]. The results have shown that the learning of a 6-hidden-
layer RL-DNN can be accelerated by over 11.7 times1 when we
use 8 GPUs and set the mini-batch size to 50k. In this case, we
can still achieve a very good performance (15.3% in WER).

4.3. RL-DNNs with tied-scalar regularization

We further investigate the performance of RL-DNNs with the
tied-scalar regularization. Here we have trained RL-DNNs us-
ing either PLP or FBK features. The training scheme of RL-
DNNs with tied-scalars is similar to that of RL-DNNs except
that we use a different learning rate for all tied-scalars, which is
set to 0.002 in our experiments. The learning rate of the tied-
scalars is kept fixed during the training. The advantage of using
tied-scalars is that we can train RL-DNNs with a large batch
size more reliably. We just need to set an initial learning as eq.
(6). The learning curves of the tied-scalars of all hidden layers
are plotted in Figure 2, which indicates that these tied-scalars
gradually increase during the learning and can eventually con-
verge very well at the end. In this experiment, we can see that

1For SWB experiments, the average times for one epoch of the RL-
DNN training are 6.7 hours and 4.5 hours (measured by a NVIDIA Tesla
K20 GPU) when we use the mini-batch size of 1k and 5k respectively.

Sc
al
ar
	
  v
al
ue

0
0.
4

0.
8

1.
2

1.
6

#Batch
1 746
1491
2236
2981
3726
4471
5216
5961
6706
7451
8196
8941
9686
10431
11176
11921
12666
13411
14156
14901
15646
16391

layer1 layer2 layer3
layer4 layer5 layer6

Figure 2: The learning curves of tied-scalar for a 5-hidden-layer
RL-DNN with tied-scalar trained using batch size of 10k.

Table 3: Word error rates (WER in %) of RL-DNNs with tied-
scalar in SWB.

Input hidden layer
batch size

10k 100k 200k

PLP
5*2048 15.1 15.2 16.0
6*2048 14.7 15.2 -

FBK 6*2048 13.8 14.1 -

the tied-scalars in all hidden layers converge to 1.4 while those
in the input and output layers converge to 1.2. Compared to the
L2 norm regularization in [15], the proposed tied-scalar regu-
larization can automatically learn the optimal upper bound for
the L2 norm. Experimental results in Table 3 show that the
proposed tied-scalar regularization can further improve the per-
formance of RL-DNNs significantly. For example, we have
achieved a word error rate of 15.1% by using PLP feature for
a 5-hidden-layer RL-DNN with tied-scalar while the baseline
system in Table 1 is 16.5%. Moreover, for a 6-hidden-layer
RL-DNN with tied-scalars (use FBK as input) trained using a
batch size of 10k, we have achieved 13.8% in WER. To our
knowledge, this is the best reported performance on this task
for the speaker-independent training (without speaker-specific
adaptation and normalization as in [23, 24]) using the frame-
level cross-entropy error criterion.

5. Conclusions

In this work, we have presented an empirical study to show that
RL-DNNs can be effectively learned with a very large mini-
batch size and have further proposed a tied-scalar regulariza-
tion method to make the learning of RL-DNNs with large batch
sizes more reliable. In this way, the training of RL-DNNs can
be easily parallelized using multiple GPUs for better efficiency.
Our experiments on the Switchboard task have shown that we
can speedup the learning by more than 10 times using 8 GPUs,
meanwhile it can still yield very competitive performance. For
example, we have achieved a WER of 13.8% with a 6-hidden-
layer RL-DNN with tied-scalars trained using a mini-batch size
of 10k, which is the best reported performance in this case.



6. References
[1] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun,

“What is the best multi-stage architecture for object recog-
nition?” in Computer Vision, 2009 IEEE 12th Interna-
tional Conference on. IEEE, 2009, pp. 2146–2153.

[2] V. Nair and G. E. Hinton, “Rectified linear units im-
prove restricted boltzmann machines,” in Proceedings of
the 27th International Conference on Machine Learning
(ICML-10), 2010, pp. 807–814.

[3] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rec-
tifier networks,” in Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics. JMLR
W&CP Volume, vol. 15, 2011, pp. 315–323.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems 25,
2012, pp. 1106–1114.

[5] M. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang,
Q. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean
et al., “On rectified linear units for speech processing.”
ICASSP, 2013.

[6] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving
deep neural networks for lvcsr using rectified linear units
and dropout,” in Proc. ICASSP, 2013.

[7] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier non-
linearities improve neural network acoustic models,” in
Proc. ICML, vol. 30, 2013.

[8] L. Tóth, “Phone recognition with deep sparse rectifier
neural networks,” in Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2013 IEEE International Conference
on. IEEE, 2013, pp. 6985–6989.

[9] L. Bottou, “Stochastic gradient learning in neural net-
works,” Proceedings of Neuro-Nımes, vol. 91, no. 8, 1991.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[11] O. Bousquet and L. Bottou, “The tradeoffs of large scale
learning,” in Advances in neural information processing
systems, 2008, pp. 161–168.

[12] S. Zhang, C. Zhang, Z. You, R. Zheng, and B. Xu, “Asyn-
chronous stochastic gradient descent for dnn training,” in
Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on. IEEE, 2013, pp.
6660–6663.

[13] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Interna-
tional Conference on Artificial Intelligence and Statistics,
2010, pp. 249–256.

[14] G. Hinton, “A practical guide to training restricted boltz-
mann machines,” Momentum, vol. 9, no. 1, p. 926, 2010.

[15] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,
and R. R. Salakhutdinov, “Improving neural networks
by preventing co-adaptation of feature detectors,” arXiv
preprint arXiv:1207.0580, 2012.

[16] H. Jiang, “Discriminative training for automatic speech
recognition: A survey,” Computer and Speech, Language,
vol. 24, no. 4, pp. 589–608, 2010.

[17] J. Pan, C. Liu, Z. Wang, Y. Hu, and H. Jiang, “Inves-
tigation of deep neural networks (DNN) for large vo-
cabulary continuous speech recognition: Why DNN sur-
passes GMMs in acoustic modeling,” in Proc. of Interna-
tional Symposium on Chinese Spoken Language Process-
ing (ISCSLP), 2012, pp. 301–305.

[18] Y. Bao, H. Jiang, C. Liu, Y. Hu, and L. Dai, “Investigation
on dimensionality reduction of concatenated features with
deep neural network for lvcsr systems,” in Signal Process-
ing (ICSP), 2012 IEEE 11th International Conference on,
vol. 1. IEEE, 2012, pp. 562–566.

[19] Y. Bao, H. Jiang, L. Dai, and C. Liu, “Incoherent training
of deep neural networks to de-correlate bottleneck fea-
tures for speech recognition,” in Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International
Conference on. IEEE, 2013, pp. 6980–6984.

[20] S. Zhang, Y. Bao, P. Zhou, H. Jiang, and L. Dai, “Improv-
ing deep neural networks for LVCSR using dropout and
shrinking structure,” in Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2014 IEEE International Conference
on. IEEE, 2014, pp. 6849–6853.

[21] P. Zhou, C. Liu, Q. Liu, L. Dai, and H. Jiang, “A cluster-
based multiple deep neural networks method for large vo-
cabulary continuous speech recognition,” in Proc. of IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2013.

[22] P. Zhou, H. Jiang, L.-R. Dai, Y. Hu, and Q.-F. Liu, “State-
clustering based multiple deep neural networks modeling
approach for speech recognition,” IEEE/ACM Trans. on
Audio, Speech and Language Processing, vol. 23, no. 4,
pp. 631–642, 2015.

[23] S. Xue, O. Abdel-Hamid, H. Jiang, and L. Dai, “Direct
adaptation of hybrid DNN/HMM model for fast speaker
adaptation in LVCSR based on speaker code,” in Proc. of
IEEE International Conference of Acoustics,Speech and
Signal Processing (ICASSP), 2014.

[24] S. Xue, O. Abdel-Hamid, H. Jiang, L. Dai, and Q. Liu,
“Fast adaptation of deep neural network based on discrim-
inant codes for speech recognition,” IEEE/ACM Trans. on
Audio, Speech and Language Processing, vol. 22, no. 12,
pp. 1713–1725, 2014.


