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Abstract

Hybrid systems which integrate the deep neural network (DNN)
and hidden Markov model (HMM) have recently achieved re-
markable performance in many large vocabulary speech recog-
nition tasks. These systems, however, remain to rely on the
HMM and assume the acoustic scores for the (windowed)
frames are independent given the state, suffering from the same
difficulty as in the previous GMM-HMM systems. In this pa-
per, we propose the deep segmental neural network (DSNN), a
segmental model that uses DNNs to estimate the acoustic scores
of phonemic or sub-phonemic segments with variable lengths.
This allows the DSNN to represent each segment as a single
unit, in which frames are made dependent on each other. We
describe the architecture of the DSNN, as well as its learning
and decoding algorithms. Our evaluation experiments demon-
strate that the DSNN can outperform the DNN/HMM hybrid
systems and two existing segmental models including the seg-
mental conditional random field and the shallow segmental neu-
ral network.
Index Terms: Segmental Model, Segmental Conditional Ran-
dom Field, Deep Segmental Neural Network

1. Introduction
Recently, deep-neural-network hidden Markov model
(DNN/HMM) hybrid systems have achieved remarkable
performance in many large vocabulary speech recognition
tasks [1, 2, 3, 4, 5, 6, 7, 8]. These DNN/HMM hybrid systems,
however, estimate the observation likelihood score for each
(windowed) frame independently, and rely on a separate HMM
to connect these scores to form the overall scores for phonemes,
words, and then sentences.

It has been known for decades that modeling speech using
the conventional HMM has several limitations as analyzed in
[9, 10, 11]. The limitations include the assumption of condi-
tional independence of temporal observations given the state,
the restriction of using frame-level features, and weak duration
modeling. To eliminate these limitations, many techniques have
been developed. These techniques can be described in a unified
framework named the segmental model [9]. The state sequence
in the segmental models is often modeled as a Markov chain.
However, these states emit variable-length segments (typically
phonemes or subphonemes) instead of a set of independent
frames. Because of this characteristic, segment-level features
such as duration can be easily incorporated in the segmental
models and the frame independence assumption is no longer
needed.

More recently, segmental models have also been developed
in the discriminative model framework (e.g., segmental condi-
tional random field (SCRF) [12, 13]). These models, however,

are typically shallow, require manual feature design, and are of-
ten used in the second pass decoding scenario. In these models,
the feature design and the log-linear classifier are independently
trained as two separate components of the system.

In this paper, we propose an integrated segmental model
— deep segmental neural network (DSNN). Similar to the
SCRF, at the top of the DSNN is a conditional random field
(CRF) that models sequences. Unlike the SCRF, our proposed
DSNN uses a DNN to model the variable-length segments and
learn the CRF and DNN parameters jointly. Compared to the
DNN/HMM hybrid system, the DSNN replaces the HMM with
a CRF and generates a score for each variable-length segment
instead of for each frame. These acoustic scores, one for each
segment, are combined with the language model (LM) scores to
compute the label sequence’s conditional probability.

The rest of the paper is organized as follows. In Section
2 we describe the proposed DSNN in detail. We also propose
three simple ways to reduce the model complexity. In Sections
3 and 4, we introduce the learning and decoding algorithms
we have developed for the DSNN. We report experimental re-
sults on the TIMIT dataset in Section 5 and demonstrate that
the DSNN performs better than the DNN/HMM hybrid systems
and the SCRF. We discuss the related work in Section 6 and
conclude the paper in Section 7.

2. The deep segmental neural network
2.1. Model description

Assuming we are given a sequence of feature vectors, X , for an
utterance, we use L = {l1, · · · , lK} to represent a sequence of
labels, which may be defined at the subphoneme, phoneme, syl-
lable or even word level, and T = {t0, t1, · · · , tK} to denote
one particular time alignment for the label sequence. The label
sequence and the associated time sequence form a segment se-
quence. The conditional probability for the segment sequence
Y given the speech utterance X is estimated as

P (L, T |X) =
exp

(∑
i s(li, ti−1 + 1, ti|X) + u(L)

)∑
L̂,T̂ exp

(∑
j s(l̂i, t̂i−1 + 1, t̂i|X) + u(L̂)

) ,
(1)

where s(li, ti−1 + 1, ti|X) represents the acoustic score of
getting label li for the segment that has the time boundaries
[ti−1 +1, ti], and u(L) stands for the total LM score computed
for the entire label sequenceL. The denominator in Eq.(1) sums
over all possible label sequences L̂ and time alignments T̂ . If
we are only interested in the label sequence L, we can sum over
all possible time alignments to yield the posterior probability of
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Figure 1: Structure of the deep segmental neural network
(DSNN)

one particular L given X as

P (L|X) =
∑
T

P (L, T |X)

=

∑
T exp

(∑
i s(li, ti−1 + 1, ti|X) + u(L)

)∑
L̂,T̂ exp

(∑
j s(l̂i, t̂i−1 + 1, t̂i|X) + u(L̂)

) . (2)

In this work, we use DNNs to compute acoustic scores for
each variable-length segment, s(li, ti−1 + 1, ti|X), and thus
name our model the deep segmental neural network (DSNN).
The scores used here may take values of any suitable range and
they need not be log probabilities. The total acoustic and lan-
guage score of a label and segmentation sequence is the negated
value of the energy function of the model. We leave the DNN
to compute any scores that maximize conditional probability of
the training data. Note that any type of LM can be used in the
above definition. In this paper, we use a simple phoneme bi-
gram LM to compute u(L). Other more complex LMs can be
used as well but they may require some approximations such as
constraining search space with word graphs instead of summing
over all possible segment sequences.

2.2. Score functions

It is well known that speech segments are of variable length.
However, the DNN expects fixed-length inputs. This imposes a
challenge when we apply DNNs to segmental models. In this
section, we propose methods to normalize segments, which lead
to various practical ways of implementing the DSNN.

The basic structure of the DSNN, shown in Fig. 1, is used to
compute the acoustic scores for segments. Some DNNs, repre-
sented as the trapezoid shapes in the figure, are used to compute
frame-level features. Each of these DNNs includes a few fully-
connected hidden layers. Similar to the DNN/HMM hybrid sys-
tem, each DNN computes an acoustic score by taking several
consecutive frames within a context window, which is centered
at one particular frame located within the given segment or the
left/right context of the segment. To normalize variable-length
segments, we useNc DNNs distributed evenly over the segment
frames as shown in Fig. 2. Moreover, we add Nl DNNs to pro-
cess the left context and Nr DNNs to process the right context.

Example values used in this work are Nl = Nr = 2 and
Nc = 4. The outputs from these DNNs are then fed into one or
more layers of additional hidden nodes, which now take a fixed-
size input. As shown in Fig. 1, these upper layers are called
segment-aware hidden layers, on top of which the output layer

is added to compute the final label score vector corresponding
to the current segment.

The weights of the lower-level DNNs may be tied. In this
case, a single DNN is shifted along the time axis in the speech
utterance to compute a fixed-size feature as the input of the
upper-level, segment-aware hidden layers in the DSNN.

This segment aware-DNN requires re-computation of the
DNN outputs for every segment boundary. Otherwise, a simpler
method is to use a frame-based DNN to compute acoustic scores
for every frame. To compute the score o(l, t) of label l at time
t, the DNN takes a number of consecutive frames centred at
time t. Then a segment score is derived from these frame-based
scores using several alternative methods as illustrated in Fig. 2
and described below.

2.2.1. Approximation by the score from the middle frame

The first method, shown in Fig. 2a, approximates the segment’s
score using the DNN score computed for the middle frame
within the segment; i.e.,

s(li, ti−1 + 1, ti|X) = o(li,
ti + ti−1 + 1

2
) (3)

2.2.2. Approximation by the score from the final frame

The segment’s score can also be approximated by the DNN
score computed from the final frame of the segment as shown
in Fig. 2b as

s(li, ti−1 + 1, ti|X) = o(li, ti) (4)

2.2.3. Approximation by summing scores from full segment

Similarly, the segment’s score can be approximated by sum-
ming the DNN scores over all frames located within the seg-
ment as shown in Fig. 2c

s(li, ti−1 + 1, ti|X) =

ti∑
t=ti−1+1

o(li, ti) (5)

3. Training of weights via backpropagation
In this section, we describe the learning method for estimating
the weights in the DSNN model from training data. For each ut-
terance in the training set, we have its feature sequence, X , and
label sequence, L. No segment’s time boundary information,
T , is given during training. The DSNN weights are learned
discriminatively to maximize the label sequences’ conditional
likelihood function in Eq. (2). This objective function is opti-
mized in this work using the stochastic gradient ascent method.

For any particular weight matrix, W, in the DSNN, the
derivative of logarithm of the objective function can be com-
puted based on the chain rule as follows:

∂ log p(L|X)

∂ W
=
∑

l,ts,te

∂ log p(L|X)

∂ s(l, ts, te)
· ∂ s(l, ts, te)

∂ W
(6)

where s(l, ts, te) denotes the segmental acoustic score com-
puted by the low-level DNN defined by W.

The first derivative in the right hand-side of Eq.(6) can be
computed based on Eq.(2) as follows:

∂ log p(L|X)

∂s(l, ts, te)
=

∑
T∈A p(L, T |X)

p(L|X)
−

∑
(L̂,T̂ )∈B

p(L̂, T̂ |X)

(7)
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Figure 2: Three different methods for approximating the score of a segment (a, b, c). The corresponding segment-aware NN in d.

where A denotes the set of time alignments that assign time
boundaries [ts, te] with label l, and B denotes the set of
all possible label segments and time alignments that embed
(l, [ts, te])). The summations in Eq. (7) contain an exponen-
tially increasing number of terms. However, if a bigram lan-
guage model is used in Eq. (2), these summations can be recur-
sively evaluated using the forward-backward algorithm.

In this case, we define αs(l, t) as the sum of partial scores
of all paths that lead to label l starting at time t excluding the
current label score. We also define αe(l, t) as the sum of par-
tial scores of all paths that end with a segment label l and end
at time instant t. Figure 3 illustrates one step in computing
αs(l, t), which accounts for all labels before time t, and one
step in computing αe(l, t), which considers all different lengths
of segment l ending in time t. These two quantities can be com-
puted recursively according to

αs(l, t) =
∑
l̂

αe(l̂, t− 1) exp
(
w(l; l̂)

)
(8)

and

αe(l, t) =

Dl∑
d=1

αs(l, t− d+ 1) exp
(
s(l, t− d+ 1, t|x)

)
(9)

where d represents the segment duration, Dl is the maximum
duration for label l (which can be learned from the training data,
and w(l; l̂) is the language model score for transitioning from
label l̂ to l.

Similarly, βs and βe are defined for the backward direction
as:

βe(l, t) =
∑
l̂

βs(l̂, t+ 1) exp
(
w(l̂; l)

)
(10)

βs(l, t) =

Dl∑
d=1

βe(l, t+ d− 1) exp
(
s(l, t, t+ d− 1|x)

)
(11)

Model learning requires the computation of s(l, ts, te) for all
possible l, ts, and te, where the duration of each label l is lim-
ited to the maximum duration seen for the label in the training
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Figure 3: Illustration of recursive “forward” computations of
αs and αe.

set. This computation has been efficiently implemented by par-
allelizing them in a GPU. After these computations, the deriva-
tives of the log objective function are back-propagated to all
DNNs to update each weight matrix via gradient ascent.

4. Decoding
In decoding, we aim to search for the best label and alignment
sequence for each speech utterance X in the test set. With the
use of a bigram language model, the search can be carried out
using the Viterbi version of the forward algorithm in Eqs. (8)
and (9) by replacing summation with maximization. This de-
coding is much slower than the standard HMM Viterbi algo-
rithm as it requires the consideration of all possible segment du-
rations. In our experiments, we have speeded up decoding con-
siderably using parallel codes on both CPU (for Viterbi search)
and GPU (for computing DSNN segments’ scores).

5. Experimental evaluation
5.1. Experimental setup

Experiments are performed on the TIMIT corpus in the standard
phone recognition task with the core test set and with 39 folded
classes. In feature extraction, speech is analyzed using a 25-ms



Table 1: Phone error rate (PER) comparisons of the full version
of a DSNN and several approximate, simplified versions.

Score Function LM no LM
Hybrid DNN-HMM 23.31% 24.63%
Simplified DSNN - Middle Frame 25.61% 24.72%
Simplified DSNN - Last Frame 24.59% 25.36%
Simplified DSNN - Segment Sum 25.42% 25.35%
Full-scale DSNN 22.90% 23.92%

Hamming window with a 10-ms fixed frame rate. The speech
feature vector is generated by a Fourier-transform-based filter-
banks, which includes 40 coefficients distributed on a Mel scale
and energy, along with their first and second temporal deriva-
tives.

In the DSNN experiments, only label sequences are used
for training and no alignment information is used. Furthermore,
a phoneme bigram language model estimated from the training
set is used to compute the label sequence’s log probability in Eq.
1 as the LM score. This LM score is used in both training and
decoding. No duration model is used for any model. During
DSNN training, a learning rate annealing and early stopping
strategy are adopted following [14].

5.2. Results

Experiments are conducted to measure the performance of the
proposed DSNN and to evaluate different approximated score
functions and DNN architectures. Table 1 summarizes the re-
sults and compares the DSNN to the hybrid DNN/HMM model.
All the models used in the experiments have 4 fully connected
hidden layers. We observe that the full-scale DSNN (with
a segment-aware DNN) outperforms the hybrid DNN/HMM
model and all approximate versions with various simplified seg-
ment score estimation methods. Unfortunately, none of the sim-
plified approach explored here can beat the hybrid DNN/HMM
model.

Table 2 shows the performance of the full-scale DSNN with
different architectures and hyper-parameters. Use of four hid-
den layers performs considerably better than two. Moreover,
use of different sets of weights for each of the low-level, frame-
based DNNs (“non-shared” in column 2) performs better than
sharing weights (row 4 vs. row 3), and also reduces the com-
plexity in computing the DSNN scores. While a lower PER
of 21.87% was obtained using a convolutional neural network
[15], the DSNN (with no convolutional structure) performs sig-
nificantly better than other segmental models such as the Seg-
mental CRF (PER 33.1%) [16] and the shallow segmental neu-
ral network (SNN) (performs significantly worse than the hy-
brid system) [17].

6. Relation to prior work
While both using a segmental structure, the DSNN described in
this paper is different from the earlier model of SCRF [16, 18]
in several ways. First, feature transformation and the sequence
model component in the DSNN are optimized jointly, while in
the SCRF they are two separate processes and the features are
often manually defined. Second, we used a conditional like-
lihood function (Eq. 1) that allows for including an arbitrary
LM. In contrast, the LM for a SCRF is defined using the transi-

Table 2: PER comparisons among different DSNN architec-
tures. The first column shows the number of hidden units in
each hidden layer. The two pairs of brackets represent the lower
DNN and the top segment-dependant neural net, respectively.

DSNN Architecture features sharing PER
{300}, {1000} shared 24.15%
{300*8}, {1000} non-shared 24.40%
{1000,500}, {1000,1000} shared 23.52%
{1000,150*8}, {1000,1000} non-shared 22.90%
{CNN (84 Kernels * 20
bands),150*8}, {1000,1000} non-shared 21.87%

tional features and their weights between two states. Although
by carefully designing the model states, this can map to N-gram
LMs [12] in an indirect way, we believe that our segmental
model formulation of Eq. 1 is more natural for incorporating
arbitrary LMs (e.g., Recurrent neural net LMs).

A similar deep model to ours has been proposed for the
CRF model in [19, 20, 21, 22] with the difference of being
frame-based rather than being segment-based. Separately, in
[17], a segmental neural net model was proposed where the vari-
able length segment was sampled to a fixed number of frames
and where some frames may be skipped or repeated. In the
DSNN presented in this paper, we do re-sampling on the hidden
layer features that represent a sequence of frames. So, theoreti-
cally all frames can be represented in the DSNN while preserv-
ing the structure between consecutive frames.

7. Conclusions
We have presented a novel segmental model — the deep seg-
mental neural network. The DSNN estimates the acoustic
scores for variable-length segments and models the label se-
quence’s conditional probability directly. This eliminates the
assumption that each frame is independent of each other given
the state and thus has potential to perform better than the
DNN/HMM hybrid. We have described several possible simpli-
fications for the segment score estimation and the DSNN learn-
ing and decoding algorithms. We demonstrated that the unsim-
plified DSNN performs better than the hybrid DNN/HMM on
the TIMIT phone recognition task. While this is an initial at-
tempt to use the DSNN, the results are promising and are better
than that obtained by other segmental models such as the SCRF
[16] and the SNN [17].

The proposed DSNN can be further improved in several di-
rections. First, the DSNN without using convolution layers per-
forms worse than the CNN. A natural extension is to use CNN in
the DSNN architecture. Second, the approximated score func-
tions explored in this work do not work well. Additional work
needs to be done to find a better simplified method for segment
score calculation. Third, we only used acoustic and language
model information in this work. Additional improvement may
come from exploiting other information such as duration.
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