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Discriminative Models in ML: Review

ML model
x y

input x is a random vector: x ∼ p(x)

output y is generated by an unknown but deterministic target
function y = f̄(x) for each input x

our goal: estimate f̄(·) in a model space H
use a training set: D = {(x1, y1), (x2, y2), · · · , (xN , yN )},
where xi ∼ p(x) and yi = f̄(xi)

choose a loss function l(y, y′), and minimize the empirical risk:

f∗ = arg min
f∈H

Remp(f |D) = arg min
f∈H

N∑
i=1

l(yi, f(xi))

finial performance depends on the generalization bound
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Generative Models in ML

ML model
x y

input x and output y are random variables drawn from an
unknown joint distribution, i.e. (x, y) ∼ p(x, y)

the relation x→ y is stochastic, solely relies on p(y|x)

our goal: estimate p(x, y) using a probabilistic model p̂θ(x, y)

use a training set: D = {(x1, y1), (x2, y2), · · · , (xN , yN )},
where (xi, yi) ∼ p(x, y)

the relation x→ y may be approximated by p̂θ(y|x)

final performance relies on the gap between p(x, y) and
p̂θ(x, y), e.g. KL

(
p(·) || p̂θ(·)

)
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Discriminative vs. Generative Models: Recap

ML model
x y

the goal: to estimate an ML model to predict output y from input
x based on some samples D = {(x1, y1), (x2, y2), · · · , (xN , yN )}

discriminative models

data generation assumption:
xi ∼ p(x) and yi = f̄(xi)

x→ y is deterministic:
y = f̄(x)

use D to estimate the target
function: y = f̄(x)

generative models

data generation assumption:
(xi, yi) ∼ p(x, y)

x→ y is stochastic: p(y|x)

use D to estimate the joint
distribution: p(x, y)
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Deterministic vs. Stochastic

deterministic: given the same input x, the output y is always
the same as y = f̄(x)

stochastic: given the same input x, the output y is still a
random variable following p(y|x)

stochasticity may come from noises, parameter variations, etc.

discriminative models focus on function estimation

generative models focus on density estimation

generative models are a more generic setting but also more
challenging to learn in general
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Generative Models for Classification

generative model
x y

input x: feature vectors (continuous or discrete)

output y = {ω1, ω2, · · · , ωK}: discrete, called class labels

the joint distribution p(x, y) = p(y)p(x|y) breaks down to:

◦ prior probabilities: p(y = ωk)
∆
= Pr(ωk) (∀k = 1, 2, · · · ,K)

◦ class-conditional distributions: p(x|y = ωk)
∆
= p(x|ωk)

(∀k = 1, 2, · · · ,K)

probabilistic distribution constraints:
◦ priors satisfy

∑K
k=1 Pr(ωk) = 1

◦ if x is continuous,
∫
x
p(x|ωk)dx = 1 (∀k = 1, 2, · · · ,K)

◦ if x is discrete,
∑

x p(x|ωk) = 1 (∀k = 1, 2, · · · ,K)
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Bayesian Decision Theory (I): Classification

generative model
x y = ωk

given any x, determine the best class in {ω1, · · ·ωK}
any decision rule: x 7−→ g(x) ∈ {ω1, · · ·ωK}
Bayesian decision theory: the best decision is

g∗(x) = arg max
k

p(ωk|x) = arg max
k

Pr(ωk)p(x|ωk)
p(x)

= arg max
k

Pr(ωk) · p(x|ωk)

a.k.a. the maximum a posterior (MAP) rule or Bayes
decision rule.

why is this optimal?
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Optimality of the MAP rule (I)

Theorem 1

Assume p(x, ω) is known, when x is used to predict ω, the MAP
rule leads to the lowest expected risk (using 0-1 loss).

the 0-1 loss function: l(ω, ω′) =

{
0 when ω = ω′

1 otherwise
the expected risk of any rule x 7−→ g(x) ∈ {ω1, · · ·ωK}:

R(g) = Ep(x,ω)
[
l
(
ω, g(x)

)]
=

∫
x

K∑
k=1

l
(
ωk, g(x)

)
p(x, ωk)dx

=

∫
x

[ K∑
k=1

l
(
ωk, g(x)

)
p(ωk|x)

]
︸ ︷︷ ︸∑

ωk 6=g(x)
p(ωk|x)

p(x)dx
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Optimality of the MAP rule (II)

due to
∑K

k=1 p(ωk|x) = 1, we have∑
ωk 6=g(x)

p(ωk|x) = 1− p
(
g(x
)
|x)

we have

R(g) ↓ =⇒ ∀x,
[
1− p

(
g(x)|x

)]
↓ =⇒ ∀x, p

(
g(x)|x

)
↑

since g(x) ∈ {ω1, · · ·ωK}, we choose:

g∗(x) = arg max
k

p(ωk|x)

�

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 10



Formulation Decision Theory Data Modelling Density Estimation Generative Models

Classification Error Probability

any rule x 7→ g(x) ∈ {ω1, · · ·ωK} partitions input
space into K regions, i.e. O1, O2, · · · , OK
x ∈ Ok =⇒ g(x) = ωk

the expected risk is the probability of
classification error:

R(g) = Pr(error) = 1− Pr(correct)

= 1−
K∑
k=1

Pr(x ∈ Ok, ωk)

= 1−
K∑
k=1

Pr(ωk)

∫
x∈Ok

p(x|ωk)dx

the Bayes error: R(g∗) of the MAP rule (the
lowest possible error)
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Example: the MAP rule for independent binary features

2-class (ω1 and ω2) classification: Pr(ω1) and Pr(ω2)

use d independent binary features x =
[
x1, x2, · · · , xd

]ᵀ
, where

xi ∈ {0, 1} ∀i = 1, 2, · · · , d

denote αi
∆
= Pr(xi = 1|ω1) and βi

∆
= Pr(xi = 1|ω2), we have:

p(x|ω1) =
∏d
i=1 α

xi
i (1− αi)1−xi p(x|ω2) =

∏d
i=1 β

xi
i (1− βi)1−xi

the MAP rule: given x, classify as ω1 if Pr(ω1) · p(x|ω1) ≥
Pr(ω2) · p(x|ω2), otherwise ω2.

take logarithm to derive a linear decision boundary:

g(x) =

d∑
i=1

λixi + λ0 =

{
≥ 0 =⇒ ω1

< 0 =⇒ ω2

where λi = ln αi(1−βi)
βi(1−αi) and λ0 =

∑d
i=1 ln 1−αi

1−βi + ln Pr(ω1)
Pr(ω2)
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Generative Models for Regression

generative model
x y

input: n-dimensional vector x ∈ Rn; output: y ∈ R
the joint distribution p(x, y) is known
x is used to predict y as y = g(x)
what is the best decision rule g(x) for x 7→ y?
Bayesian decision theory suggests the best rule as:

g∗(x) = E(y|x) =

∫
y
y · p(y|x)dy

Theorem 2

Assume p(x, y) is known, the conditional mean E(y|x) leads to the
lowest expected risk (using mean square loss).
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Optimality of Conditional Mean for Regression

Proof:

The expected risk of any rule x→ g(x) ∈ R:

R(g) = Ep(x,y)
[
l
(
ω, g(x)

)]
=

∫
x

∫
y

(
y − g(x)

)2
p(x, y)dxdy

=

∫
x

[ ∫
y

(
y − g(x)

)2
p(y|x)dy

]
︸ ︷︷ ︸

Q(g|x)

p(x)dx

Take partial derivative w.r.t. g as:

∂Q(g|x)

∂g(·)
= 0 =⇒

∫
y

(
g(x)− y

)
p(y|x)dy = 0

=⇒ g∗(x) =

∫
y
y · p(y|x)dy = E(y|x) �
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Plug-in MAP Decision Rule for classification

since the true distributions Pr(ωk) and p(x|ωk) are unknown,
the optimal MAP decision rule is not feasible in practice

given training data: D =
{

(x1, y1), (x2, y2), · · · , (xN , yN )
}

choose two probabilistic models:
◦ p̂λ(ωk) to approximate Pr(ωk)
◦ p̂θk(x) to approximate p(x | ωk) (∀k = 1, 2, · · · ,K)

parameter estimation: estimate {λ, θ1, · · · , θK} using D
the optimal MAP rule in theory:

ω∗ = arg max
k

Pr(ωk) · p(x|ωk)

the plug-in MAP decision rule in pratice:

ω∗ = arg max
k

p̂λ(ωk) · p̂θk(x)
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Plug-in MAP Decision Rule
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Statistical Data Modeling

Assume we have collected some training samples:

D =
{

(x1, y1), · · · , (xN , yN )
}

where each (xi, yi) ∼ p(x, y) (∀i = 1, 2, · · · , N).

1 choose some probabilistic models:

Pr(ωk) ≈ p̂λ(ωk)

p(x|ωk) ≈ p̂θk(x) (∀k = 1, 2, · · · ,K)

2 estimate the model parameters:

D −→
{
λ,θ1, · · · ,θK

}
3 apply the plug-in MAP rule:

ĝ(x) = arg max
k

p̂λ(ωk) · p̂θk(x)
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Maximum Likelihood Estimation (I)

generative models for classification {ω1, · · · , ωK}:
◦ prior probabilities: Pr(ωk) (k = 1, · · · ,K)
◦ class-conditional distribution: p(x|ωk) (k = 1, · · · ,K)

collect training data for each class: Dk ∼ p(x|ωk)
density estimation: estimate the probability distribution
from a finite number of samples

select probabilistic models: p̂θk(x) ≈ p(x|ωk)
maximum likelihood estimation (MLE): learn p̂θk(x) to
maximize the probability of observing the training data Dk

θ∗k = arg max
θk

p̂θk(Dk) (k = 1, · · · ,K)

MLE: fit data best; best interpret the observed data
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Maximum Likelihood Estimation (II)

drop index k and p̂(·)→ p(·), MLE turns to be:

θMLE = arg max
θ
pθ(D) = arg max

θ
pθ(x1,x2, · · · ,xN )

where D = {x1,x2, · · · ,xN}
assume all data are i.i.d. (independent and identically
distributed), i.e., all samples are drawn independently from
the same distribution:

pθ(x1,x2, · · · ,xN ) =

N∏
i=1

pθ(xi)

why called maximum likelihood (not probability)?
◦ pθ(x): data distribution of various x if θ is given (fixed)
◦ pθ(x): likelihood function of θ if x is given (fixed)

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 10



Formulation Decision Theory Data Modelling Density Estimation Generative Models

Maximum Likelihood Estimation (III)

in many cases, it is more convenient to work with the
logarithm of the likelihood rather than the likelihood itself

denote the log-likelihood function l(θ) = ln pθ(D), we have

θML = arg max
θ

l(θ) = arg max
θ

N∑
i=1

ln pθ(xi)

optimization methods for ML estimation:
◦ differential calculus for simple models, e.g., single

univariate/multivariate Gaussian, ...
◦ Lagrange optimization for models with constraints, e.g.,

multinomial, markov chain, ...
◦ Expectation-Maximization (EM) method for mixture models,

e.g., Gaussian mixture models (GMM), hidden Markov models
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MLE Example: Univariate Gaussian Models

the training set: D = {x1, x2, · · · , xN} (∀xi ∈ R)

choose a univariate Gaussian approximate the unknown distribution:

pθ(x) = N (x |µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2

the log-likelihood function:

l(µ, σ2) =
N∑
i=1

ln pθ(xi) =
N∑
i=1

[
− ln(2πσ2)

2
− (xi − µ)2

2σ2

]
the MLE of the unknown Gaussian mean and variance:

∂l(µ, σ2)

∂µ
= 0 =⇒ µMLE =

1

N

N∑
i=1

xi

∂l(µ, σ2)

∂σ2
= 0 =⇒ σ2

MLE =
1

N

N∑
i=1

(xi − µMLE)
2
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Roadmap of Generative Models
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Generative Models (in a nutshell)

Gaussian-derived generative models for continuous data

multinomial-derived generative models for discrete data

unimodal models: Gaussian, multinomial, Markov chains,
generalized linear models, etc.

mixture models: Gaussian mixture models, hidden Markov
models, etc.

entangled models: factor analysis, linear Gaussian models,
deep generative models (e.g. VAE, GAN)

graphical models: naive Bayes, latent Dirichlet allocation,
restricted Boltzmann machine, conditional random fields, etc.

Bayesian learning: treat model parameters as random variables
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