Chapter 10
Overview of Generative Models

supplementary slides to
Machine Learning Fundamentals
©Hui Jiang 2020
published by Cambridge University Press

August 2020

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 10



Outline

Formulation of Generative Models
Bayesian Decision Theory
Statistical Data Modelling
Density Estimation

Generative Models (in a nutshell)

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 10



Formulation
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Discriminative Models in ML: Review

— | ML model ——

® input x is a random vector: x ~ p(x)

m output y is generated by an unknown but deterministic target
function iy = f(x) for each input x

m our goal: estimate f(-) in a model space H

m use a training set: D = {(x1,41), (X2,%2), ", (XN, YN) },
where x; ~ p(x) and y; = f(x;)

m choose a loss function I(y,y’), and minimize the empirical risk:

N

J* = argpin R, (f1D) = arg ?‘éﬁ; Uy, F(x2))

m finial performance depends on the generalization bound
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Generative Models in ML

—— ML model ———

m input x and output y are random variables drawn from an
unknown joint distribution, i.e. (x,y) ~ p(x,y)

m the relation x — y is stochastic, solely relies on p(y|x)

m our goal: estimate p(x,y) using a probabilistic model py(x, y)

m use a training set: D = {(x1,vy1), (Xx2,42), -, (Xn,yN) }
where (x;, ;) ~ p(x,y)

m the relation x — y may be approximated by py(y|x)

m final performance relies on the gap between p(x,y) and
Po(x,y), e.g. KL(p() || Po(-))
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Discriminative vs. Generative Models: Recap

ML model ———

the goal: to estimate an ML model to predict output y from input
x based on some samples D = {(x1,41), (x2,92), -, (XN, yn)}

discriminative models generative models

m data generation assumption: m data generation assumption:

x; ~ p(x) and y; = f(x;) (xi,¥i) ~ p(x,7)

"Xy is deterministic: m X — y is stochastic: p(y|x)
y=f(x)

m use D to estimate the target
function: y = f(x)

m use D to estimate the joint
distribution: p(x,y)
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Deterministic vs. Stochastic

m deterministic: given the same input x, the output y is always
the same as y = f(x)

m stochastic: given the same input x, the output y is still a
random variable following p(y|x)

m stochasticity may come from noises, parameter variations, etc.
m discriminative models focus on function estimation
m generative models focus on density estimation

m generative models are a more generic setting but also more
challenging to learn in general
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Decision Theory
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Generative Models for Classification

——— | generative model —

m input x: feature vectors (continuous or discrete)

m output y = {w1,we, - ,wk}: discrete, called class labels

m the joint distribution p(x,y) = p(y)p(x|y) breaks down to:
o prior probabilities: p(y = wy,) 4 Pr(wg) (Vk=1,2,--- , K)
o class-conditional distributions: p(x|y = wg) = p(x|wr)

(Vk=1,2,-- ,K)

m probabilistic distribution constraints:
o priors satisfy Y-, Pr(wg) = 1
o if x is continuous, [ p(x|wy)dx =1 (Vk=1,2,--- K)
o if x is discrete, > _p(x|wr) =1 (Vk=1,2,--- | K)
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Decision Theory
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Bayesian Decision Theory (I): Classification

———| generative model ——

m given any x, determine the best class in {w1, - wgi}
m any decision rule: x — g(x) € {w1, - wk}
m Bayesian decision theory: the best decision is

g (x) = arg max p(wk|x):argmkax
= argmax Pr(wy) - p(x|wg)

a.k.a. the maximum a posterior (MAP) rule or Bayes
decision rule.

m why is this optimal?
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Decision Theory
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Optimality of the MAP rule (1)

Assume p(x,w) is known, when x is used to predict w, the MAP
rule leads to the lowest expected risk (using 0-1 loss).

0 when w=uw
1 otherwise
m the expected risk of any rule x — g(x) € {w1, - wk}:

R(g) = Il“--ﬂp(x,w) [l /Zl wk,g(x))p(wik)dx

k=1

-/ {Zzwk, ol pxiax

m the 0-1 loss function: [(w,w’') = {

D op#g(x) PWk[X)
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Decision Theory
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Optimality of the MAP rule (Il)

= due to S 1, p(wi|x) = 1, we have

> plwklx) =1-p(g(x)[x)
wiF#g(x)

m we have
R(g) L = v, [1 = p(g(x)[x)| L = ¥x,p(g(x)Ix) T
m since g(x) € {wi1,---wk}, we choose:

g*(x) = arg max p(wi|x)
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Decision Theory
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Classification Error Probability

m any rule x — ¢g(x) € {w1, - wgk} partitions input
space into K regions, i.e. 01,05, -+ ,0k
x €0, = g(x) =wy

m the expected risk is the probability of
classification error:

R(g) = Pr(error) =1 — Pr(correct)

K
1-— ZPr(x € Ok, wr)

k=1

1-— ZPr(wk)/ p(x|wk)dx

€0y,

Prtapt "‘“"f Lo Prwp(x|w?)

m the Bayes error: R(g*) of the MAP rule (the o et
lowest possible error)
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Decision Theory
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Example: the MAP rule for independent binary features

m 2-class (wy and wy) classification: Pr(w;) and Pr(ws)
m use d independent binary features x = [21, 22, -+, 4], where
z; €{0,1} Vi=1,2,---.,d
m denote a; 2 Pr(x; = 1|wy) and S; £ Pr(x; = 1ws), we have:
d s A g .
p(xlwr) = [Timy of (1 =)' ™" p(xfwz) = [Timy B (1= i)'~

m the MAP rule: given x, classify as wy if Pr(wy) - p(x|wy) >
Pr(ws) - p(x|ws), otherwise ws.

m take logarithm to derive a linear decision boundary:

d >0 = w
Q(X)ZZM%‘-F)\O: <0 — wy
i—1

where \; = In gl((ll:ig and \g = Z?zl In igz +1In gigi;g
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Generative Models for Regression

——— | generative model —

input: n-dimensional vector x € R™; output: y € R
the joint distribution p(x,y) is known

x is used to predict y as y = g(x)

what is the best decision rule g(x) for x — y?
Bayesian decision theory suggests the best rule as:

4" (x) = E(y|x) = / y - pylx)dy

Assume p(x,y) is known, the conditional mean E(y|x) leads to the
lowest expected risk (using mean square loss).
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Decision Theory
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Optimality of Conditional Mean for Regression

Proof:
m The expected risk of any rule x — g(x

R(g) = ]Ep(x,y) / / X y)dxdy

- [ (y olx >) py)d ]p<x>dx

Q(glx)
m Take partial derivative w.r.t. g as:
9Qglx) _ =0 = / p(y|x)dy = 0
dg(-)
— 0= [y plobdy —E@x)

Yy
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Data Modelling
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Plug-in MAP Decision Rule for classification

m since the true distributions Pr(wy) and p(x|wy) are unknown,
the optimal MAP decision rule is not feasible in practice
m given training data: D = {(xl,yl), (x2,92)," ,(XN,yN)}
m choose two probabilistic models:
o pr(wy) to approximate Pr(wg)
o P, (x) to approximate p(x | wi) (VE=1,2,--- ,K)
m parameter estimation: estimate {\, 01, - ,0x} using D
m the optimal MAP rule in theory:

w* = arg max Pr(wg) - p(x|wg)
m the plug-in MAP decision rule in pratice:

w" = arg max Pa(wr) - Doy, (%)
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Data Modelling
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Plug-in MAP Decision Rule

—true pdf of class 1
—generative model of classl
—true pdf of class 2
—generative model of class2
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Data Modelling
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Statistical Data Modeling

Assume we have collected some training samples:

D= {(X17y1)7 Tt 7(XN7yN)}
where each (x;,v;) ~p(x,y) (Vi=1,2,--- N).
choose some probabilistic models:

Pr(wk) ~ pa(wk)
p(x|wg) = po, (x) (VE=1,2,--- K)
estimate the model parameters:
D — {)\,01,--- ,OK}
apply the plug-in MAP rule:

g(x) = arg ml?x DPa(wg) - Doy, (x)
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Density Estimation
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Maximum Likelihood Estimation (1)

m generative models for classification {wq, -+ ,wgk}:
o prior probabilities: Pr(wg) (k=1,---,K)
o class-conditional distribution: p(x|wy) (k=1,---,K)

m collect training data for each class: Dy ~ p(x|wg)

m density estimation: estimate the probability distribution
from a finite number of samples

m select probabilistic models: py, (x) ~ p(x|wy)

= maximum likelihood estimation (MLE): learn py, (x) to
maximize the probability of observing the training data Dy,

0y = argI%axﬁgk(Dk) (k=1,--- ,K)
k

m MLE: fit data best; best interpret the observed data
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Density Estimation
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Maximum Likelihood Estimation (I1)

m drop index k and p(-) — p(:), MLE turns to be:

Oue = arg mgXPH(D) = arg mQaXPQ(Xla X2, ,XN)

where D = {x1,x2, -+ ,Xn}

m assume all data are i.i.d. (independent and identically
distributed), i.e., all samples are drawn independently from
the same distribution:

N
po(x1,xa, -+, xn) = [ po(xs)
i=1

m why called maximum likelihood (not probability)?

o pg(x): data distribution of various x if 6 is given (fixed)
o pg(x): likelihood function of @ if x is given (fixed)
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Density Estimation
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Maximum Likelihood Estimation (I11)

B in many cases, it is more convenient to work with the
logarithm of the likelihood rather than the likelihood itself

m denote the log-likelihood function [(#) = In py(D), we have

N
O = arg max [(0) = arg max z;lnpg(xi)

m optimization methods for ML estimation:
o differential calculus for simple models, e.g., single
univariate/multivariate Gaussian, ...
o Lagrange optimization for models with constraints, e.g.,
multinomial, markov chain, ...
o Expectation-Maximization (EM) method for mixture models,
e.g., Gaussian mixture models (GMM), hidden Markov models
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Density Estimation
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Example: Univariate Gaussian Models

m the training set: D = {x1, 29, -+ ,zn} (Vz; € R)
m choose a univariate Gaussian approximate the unknown distribution:
1 (w—p)?
2
po(x) =N(z|p,0°) = e 20?
@) =Nl = —

m the log-likelihood function:

N N 2 2

In(2wo T —
(po®) = npo(e) =3 [_ ( - ) _( 202#) }
=1 i=1

ol(p,0)
an =0 = pume = Zl‘z
ol(w, o2 o
(5;2 b0 — OMLE = Z:: — pmite)’
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Roadmap of Generative Models

Generative Models
°0

/7 Factor Analysis | —>

o]

continuous data

discrete data

/7 Multinomial

Linear Gaussian

Deep Generative

Gaussian Mixture
Models (GMM)

Mixture of

Models Models
Variational Auto-Encoder
Continuous Generative Adversary Nets

HMM

= [t ] =

N

Models

Discrete /7 Latent Dirichlet Allocation
HMM

Restricted Boltzmann Machine
Conditional Random Fields




Generative Models
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Generative Models (in a nutshell)

m Gaussian-derived generative models for continuous data
m multinomial-derived generative models for discrete data

m unimodal models: Gaussian, multinomial, Markov chains,
generalized linear models, etc.

m mixture models: Gaussian mixture models, hidden Markov
models, etc.

m entangled models: factor analysis, linear Gaussian models,
deep generative models (e.g. VAE, GAN)

m graphical models: naive Bayes, latent Dirichlet allocation,
restricted Boltzmann machine, conditional random fields, etc.

m Bayesian learning: treat model parameters as random variables
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