Formulation	Decision Theory	Data Modelling	Density Estimation	Generative Models
0000	00000000	000		00

Chapter 10 Overview of Generative Models

supplementary slides to Machine Learning Fundamentals [©]Hui Jiang 2020 published by Cambridge University Press

August 2020

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Formulation 0000	Decision Theory 0000000	Data Modelling 000	Density Estimation	Generative Models 00
Outline				

- 1 Formulation of Generative Models
- 2 Bayesian Decision Theory
- 3 Statistical Data Modelling
- 4 Density Estimation
- 5 Generative Models (in a nutshell)

Formulation	Decision Theory	Data Modelling	Density Estimation	Generative Models
●000				

Discriminative Models in ML: Review

$$\xrightarrow{\mathbf{x}} \mathsf{ML} \mathsf{model} \xrightarrow{y}$$

- input \mathbf{x} is a random vector: $\mathbf{x} \sim p(\mathbf{x})$
- output y is generated by an unknown but deterministic target function $y = \bar{f}(\mathbf{x})$ for each input \mathbf{x}
- our goal: estimate $f(\cdot)$ in a model space $\mathbb H$
- use a training set: $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)\},\$ where $\mathbf{x}_i \sim p(\mathbf{x})$ and $y_i = \overline{f}(\mathbf{x}_i)$
- choose a loss function l(y, y'), and minimize the empirical risk:

$$f^* = \arg\min_{f \in \mathbb{H}} R_{\text{emp}}(f|\mathcal{D}) = \arg\min_{f \in \mathbb{H}} \sum_{i=1}^N l(y_i, f(\mathbf{x}_i))$$

finial performance depends on the generalization bound

Formulation	Decision Theory	Data Modelling	Density Estimation	Generative Models
○●○○	00000000	000	0000	00

Generative Models in ML

$$\xrightarrow{\mathbf{x}} \mathsf{ML} \mathsf{model} \xrightarrow{y}$$

- input x and output y are random variables drawn from an unknown joint distribution, i.e. $(x, y) \sim p(x, y)$
- the relation $\mathbf{x} o y$ is stochastic, solely relies on $p(y|\mathbf{x})$
- our goal: estimate $p(\mathbf{x},y)$ using a probabilistic model $\hat{p}_{\theta}(\mathbf{x},y)$
- use a training set: $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)\},\$ where $(\mathbf{x}_i, y_i) \sim p(\mathbf{x}, y)$
- the relation $\mathbf{x} \to y$ may be approximated by $\hat{p}_{\theta}(y|\mathbf{x})$
- final performance relies on the gap between $p(\mathbf{x}, y)$ and $\hat{p}_{\theta}(\mathbf{x}, y)$, e.g. $\mathsf{KL}(p(\cdot) || \hat{p}_{\theta}(\cdot))$

Formulation	Decision Theory	Data Modelling	Density Estimation	Generative Models
00●0	0000000	000		00

Discriminative vs. Generative Models: Recap

$$\xrightarrow{\mathbf{x}} \mathsf{ML model} \xrightarrow{y}$$

the goal: to estimate an ML model to predict output y from input \mathbf{x} based on some samples $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)\}$

discriminative models

- data generation assumption: $\mathbf{x}_i \sim p(\mathbf{x})$ and $y_i = \bar{f}(\mathbf{x}_i)$
- $\mathbf{x} \to y$ is deterministic: $y = \bar{f}(\mathbf{x})$
- use \mathcal{D} to estimate the target function: $y = \bar{f}(\mathbf{x})$

generative models

- data generation assumption: $(\mathbf{x}_i, y_i) \sim p(\mathbf{x}, y)$
- $\mathbf{x} \to y$ is stochastic: $p(y|\mathbf{x})$
- use \mathcal{D} to estimate the joint distribution: $p(\mathbf{x}, y)$

A B b A B b

Formulation 000●	Decision Theory 0000000	Data Modelling 000	Density Estimation	Generative Models 00
Deterministic vs. Stochastic				

- deterministic: given the same input ${\bf x},$ the output y is always the same as $y=\bar{f}({\bf x})$
- **stochastic**: given the same input \mathbf{x} , the output y is still a random variable following $p(y|\mathbf{x})$
- stochasticity may come from noises, parameter variations, etc.
- discriminative models focus on function estimation
- generative models focus on density estimation
- generative models are a more generic setting but also more challenging to learn in general

Formulation 0000	Decision Theory ●0000000	Data Modelling 000	Density Estimation	Generative Models

Generative Models for Classification

$$\xrightarrow{\mathbf{x}}$$
 generative model \xrightarrow{y}

- input x: feature vectors (continuous or discrete)
- output $y = \{\omega_1, \omega_2, \cdots, \omega_K\}$: discrete, called class labels
- the joint distribution $p(\mathbf{x}, y) = p(y)p(\mathbf{x}|y)$ breaks down to:
 - prior probabilities: $p(y = \omega_k) \stackrel{\Delta}{=} \Pr(\omega_k) (\forall k = 1, 2, \cdots, K)$
 - class-conditional distributions: $p(\mathbf{x}|y = \omega_k) \stackrel{\Delta}{=} p(\mathbf{x}|\omega_k)$ $(\forall k = 1, 2, \cdots, K)$
- probabilistic distribution constraints:
 - priors satisfy $\sum_{k=1}^{K} Pr(\omega_k) = 1$
 - $\circ~$ if ${\bf x}$ is continuous, $\int_{{\bf x}} p({\bf x}|\omega_k) d{\bf x} = 1~~(\forall k=1,2,\cdots,K)$
 - if x is discrete, $\sum_{\mathbf{x}} \overline{p}(\mathbf{x}|\omega_k) = 1$ ($\forall k = 1, 2, \cdots, K$)

Formulation 0000	Decision Theory ○●○○○○○○	Data Modelling 000	Density Estimation	Generative Models

Bayesian Decision Theory (I): Classification

$$\xrightarrow{\mathbf{x}}$$
 generative model $\xrightarrow{y = \omega_k}$

- given any x, determine the best class in $\{\omega_1, \cdots \omega_K\}$
- any decision rule: $\mathbf{x} \mapsto g(\mathbf{x}) \in \{\omega_1, \cdots \omega_K\}$
- Bayesian decision theory: the best decision is

$$g^{*}(\mathbf{x}) = \arg \max_{k} \quad \frac{p(\omega_{k}|\mathbf{x})}{p(\mathbf{x})} = \arg \max_{k} \quad \frac{\Pr(\omega_{k})p(\mathbf{x}|\omega_{k})}{p(\mathbf{x})}$$
$$= \arg \max_{k} \quad \Pr(\omega_{k}) \cdot p(\mathbf{x}|\omega_{k})$$

a.k.a. the **maximum a posterior (MAP) rule** or Bayes decision rule.

why is this optimal?

Formulation	Decision Theory	Data Modelling	Density Estimation	Generative Models
0000	00●00000	000	0000	00

Optimality of the MAP rule (I)

Theorem 1

Assume $p(\mathbf{x}, \omega)$ is known, when \mathbf{x} is used to predict ω , the MAP rule leads to the lowest expected risk (using 0-1 loss).

- the 0-1 loss function: $l(\omega, \omega') = \begin{cases} 0 & \text{when } \omega = \omega' \\ 1 & \text{otherwise} \end{cases}$
- the expected risk of any rule $\mathbf{x} \mapsto g(\mathbf{x}) \in \{\omega_1, \cdots , \omega_K\}$:

$$R(g) = \mathbb{E}_{p(\mathbf{x},\omega)} \left[l(\omega, g(\mathbf{x})) \right] = \int_{\mathbf{x}} \sum_{k=1}^{K} l(\omega_k, g(\mathbf{x})) p(\mathbf{x}, \omega_k) d\mathbf{x}$$

$$= \int_{\mathbf{x}} \underbrace{\left[\sum_{k=1}^{K} l(\omega_k, g(\mathbf{x})) p(\omega_k | \mathbf{x})\right]}_{\sum_{\omega_k \neq g(\mathbf{x})} p(\omega_k | \mathbf{x})} p(\mathbf{x}) d\mathbf{x}$$

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Decision Theory	Data Modelling	Density Estimation	Generative Models
0000000			

Optimality of the MAP rule (II)

• due to $\sum_{k=1}^{K} p(\omega_k | \mathbf{x}) = 1$, we have

$$\sum_{\omega_k \neq g(\mathbf{x})} p(\omega_k | \mathbf{x}) = 1 - p(g(\mathbf{x}) | \mathbf{x})$$

we have

$$R(g) \downarrow \Longrightarrow \forall \mathbf{x}, \left[1 - p(g(\mathbf{x})|\mathbf{x})\right] \downarrow \Longrightarrow \forall \mathbf{x}, p(g(\mathbf{x})|\mathbf{x}) \uparrow$$

• since $g(\mathbf{x}) \in \{\omega_1, \cdots, \omega_K\}$, we choose:

$$g^*(\mathbf{x}) = \arg\max_k p(\omega_k|\mathbf{x})$$

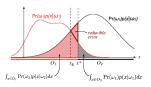
Formulation	Decision Theory	Data Modelling	Density Estimation	Generative Models
0000	0000●000	000		00

Classification Error Probability

- any rule $\mathbf{x} \mapsto g(\mathbf{x}) \in \{\omega_1, \cdots \omega_K\}$ partitions input space into K regions, i.e. O_1, O_2, \cdots, O_K $\mathbf{x} \in O_k \implies g(\mathbf{x}) = \omega_k$
- the expected risk is the probability of classification error:

F

$$\begin{aligned} \mathbf{R}(g) &= \Pr(\mathsf{error}) = 1 - \Pr(\mathsf{correct}) \\ &= 1 - \sum_{k=1}^{K} \Pr(\mathbf{x} \in O_k, \omega_k) \\ &= 1 - \sum_{k=1}^{K} \Pr(\omega_k) \int_{\mathbf{x} \in O_k} p(\mathbf{x} | \omega_k) d\mathbf{x} \end{aligned}$$



the Bayes error: R(g*) of the MAP rule (the lowest possible error)

Formulation	Decision Theory	Data Modelling	Density Estimation	Generative Models
0000	00000000	000	0000	00

Example: the MAP rule for independent binary features

- 2-class (ω_1 and ω_2) classification: $\Pr(\omega_1)$ and $\Pr(\omega_2)$
- use *d* independent binary features $\mathbf{x} = [x_1, x_2, \cdots, x_d]^\mathsf{T}$, where $x_i \in \{0, 1\} \quad \forall i = 1, 2, \cdots, d$
- denote $\alpha_i \stackrel{\Delta}{=} \Pr(x_i = 1|\omega_1)$ and $\beta_i \stackrel{\Delta}{=} \Pr(x_i = 1|\omega_2)$, we have: $p(\mathbf{x}|\omega_1) = \prod_{i=1}^d \alpha_i^{x_i} (1-\alpha_i)^{1-x_i} \quad p(\mathbf{x}|\omega_2) = \prod_{i=1}^d \beta_i^{x_i} (1-\beta_i)^{1-x_i}$
- the MAP rule: given \mathbf{x} , classify as ω_1 if $\Pr(\omega_1) \cdot p(\mathbf{x}|\omega_1) \ge \Pr(\omega_2) \cdot p(\mathbf{x}|\omega_2)$, otherwise ω_2 .
- take logarithm to derive a **linear** decision boundary:

$$g(\mathbf{x}) = \sum_{i=1}^{d} \lambda_i x_i + \lambda_0 = \begin{cases} \geq 0 & \Longrightarrow & \omega_1 \\ < 0 & \Longrightarrow & \omega_2 \end{cases}$$

where
$$\lambda_i = \ln \frac{\alpha_i(1-\beta_i)}{\beta_i(1-\alpha_i)}$$
 and $\lambda_0 = \sum_{i=1}^d \ln \frac{1-\alpha_i}{1-\beta_i} + \ln \frac{\Pr(\omega_1)}{\Pr(\omega_2)}$

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Formulation	Decision Theory	Data Modelling	Density Estimation	Generative Models
0000	000000●0	000	0000	

Generative Models for Regression

$$\xrightarrow{\mathbf{x}}$$
 generative model \xrightarrow{y}

- input: *n*-dimensional vector $\mathbf{x} \in \mathbb{R}^n$; output: $y \in \mathbb{R}$
- the joint distribution $p(\mathbf{x}, y)$ is known
- **x** is used to predict y as $y = g(\mathbf{x})$
- what is the best decision rule $g(\mathbf{x})$ for $\mathbf{x} \mapsto y$?
- Bayesian decision theory suggests the best rule as:

$$g^*(\mathbf{x}) = \mathbb{E}(y|\mathbf{x}) = \int_y y \cdot p(y|\mathbf{x}) dy$$

Theorem 2

Assume $p(\mathbf{x}, y)$ is known, the conditional mean $\mathbb{E}(y|\mathbf{x})$ leads to the lowest expected risk (using mean square loss).

Formulation	Decision Theory	Data Modelling	Density Estimation	Generative Models
0000	0000000●	000		00

Optimality of Conditional Mean for Regression

Proof:

• The expected risk of any rule $\mathbf{x} \to g(\mathbf{x}) \in \mathbb{R}$:

$$\begin{split} R(g) &= \mathbb{E}_{p(\mathbf{x},y)} \Big[l\big(\omega, g(\mathbf{x})\big) \Big] = \int_{\mathbf{x}} \int_{y} \Big(y - g(\mathbf{x}) \Big)^{2} p(\mathbf{x},y) d\mathbf{x} dy \\ &= \int_{\mathbf{x}} \underbrace{\left[\int_{y} \Big(y - g(\mathbf{x}) \Big)^{2} p(y|\mathbf{x}) dy \right]}_{Q(g|\mathbf{x})} p(\mathbf{x}) d\mathbf{x} \end{split}$$

■ Take partial derivative w.r.t. g as:

$$\frac{\partial Q(g|\mathbf{x})}{\partial g(\cdot)} = 0 \implies \int_{y} \left(g(\mathbf{x}) - y \right) p(y|\mathbf{x}) dy = 0$$
$$\implies g^{*}(\mathbf{x}) = \int_{y} y \cdot p(y|\mathbf{x}) dy = \mathbb{E}(y|\mathbf{x}) \blacksquare$$

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Plug-in MAP Decision Rule for classification

- since the true distributions $Pr(\omega_k)$ and $p(\mathbf{x}|\omega_k)$ are unknown, the optimal MAP decision rule is not feasible in practice
- given training data: $\mathcal{D} = \left\{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N) \right\}$
- choose two probabilistic models:
 - $\circ \ \hat{p}_{\lambda}(\omega_k)$ to approximate $\Pr(\omega_k)$
 - $\circ \ \hat{p}_{\theta_k}(\mathbf{x}) \text{ to approximate } p(\mathbf{x} \mid \omega_k) \quad (\forall k = 1, 2, \cdots, K)$
- parameter estimation: estimate $\{\lambda, \theta_1, \cdots, \theta_K\}$ using \mathcal{D}

• the optimal MAP rule in theory:

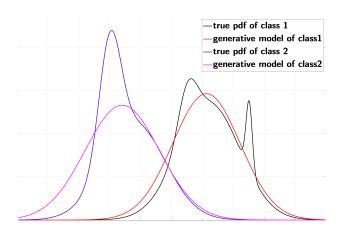
$$\omega^* = \arg\max_k \ \Pr(\omega_k) \cdot p(\mathbf{x}|\omega_k)$$

• the plug-in MAP decision rule in pratice:

$$\omega^* = \arg\max_k \ \hat{p}_\lambda(\omega_k) \cdot \hat{p}_{\theta_k}(\mathbf{x})$$

Formulation	Decision Theory	Data Modelling	Density Estimation	Generative Models
0000	0000000	0●0		00

Plug-in MAP Decision Rule



Decision Theory	Data Modelling	Density Estimation	Generative Models
	000		

Statistical Data Modeling

Assume we have collected some training samples:

$$\mathcal{D} = \left\{ (\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N) \right\}$$

where each $(\mathbf{x}_i, y_i) \sim p(\mathbf{x}, y)$ $(\forall i = 1, 2, \cdots, N).$

1 choose some probabilistic models:

$$\Pr(\omega_k) \approx \hat{p}_{\lambda}(\omega_k)$$
$$p(\mathbf{x}|\omega_k) \approx \hat{p}_{\theta_k}(\mathbf{x}) \quad (\forall k = 1, 2, \cdots, K)$$

2 estimate the model parameters:

$$\mathcal{D} \longrightarrow \left\{ \boldsymbol{\lambda}, \boldsymbol{\theta}_1, \cdots, \boldsymbol{\theta}_K \right\}$$

3 apply the plug-in MAP rule:

$$\hat{g}(\mathbf{x}) = \arg \max_{k} \ \hat{p}_{\lambda}(\omega_{k}) \cdot \hat{p}_{\theta_{k}}(\mathbf{x})$$

Formulation	Decision Theory	Data Modelling	Density Estimation	Generative Models
0000	00000000	000	●000	

Maximum Likelihood Estimation (I)

• generative models for classification $\{\omega_1, \cdots, \omega_K\}$:

- prior probabilities: $Pr(\omega_k)$ $(k = 1, \dots, K)$
- class-conditional distribution: $p(\mathbf{x}|\omega_k)$ $(k = 1, \cdots, K)$
- collect training data for each class: $\mathcal{D}_k \sim p(\mathbf{x}|\omega_k)$
- density estimation: estimate the probability distribution from a finite number of samples
- select probabilistic models: $\hat{p}_{\theta_k}(\mathbf{x}) \approx p(\mathbf{x}|\omega_k)$
- maximum likelihood estimation (MLE): learn p̂_{θk}(x) to maximize the probability of observing the training data D_k

$$\theta_k^* = \arg \max_{\theta_k} \hat{p}_{\theta_k}(\mathcal{D}_k) \quad (k = 1, \cdots, K)$$

MLE: fit data best; best interpret the observed data

Formulation 0000	Decision Theory 0000000	Data Modelling 000	Density Estimation	Generative Models

Maximum Likelihood Estimation (II)

 \blacksquare drop index k and $\hat{p}(\cdot) \rightarrow p(\cdot),$ MLE turns to be:

$$\theta_{\mathsf{MLE}} = \arg \max_{\theta} p_{\theta}(\mathcal{D}) = \arg \max_{\theta} p_{\theta}(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N)$$

where $\mathcal{D} = \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N\}$

assume all data are *i.i.d.* (independent and identically distributed), i.e., all samples are drawn independently from the same distribution:

$$p_{\theta}(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N) = \prod_{i=1}^N p_{\theta}(\mathbf{x}_i)$$

- why called maximum likelihood (not probability)?
 - $p_{\theta}(\mathbf{x})$: data distribution of various \mathbf{x} if θ is given (fixed)
 - $p_{\theta}(\mathbf{x})$: likelihood function of θ if \mathbf{x} is given (fixed)

FormulationDecision TheoryData ModellingDensity EstimationGenerative Models0000000000000000●000

Maximum Likelihood Estimation (III)

- in many cases, it is more convenient to work with the logarithm of the likelihood rather than the likelihood itself
- denote the log-likelihood function $l(\theta) = \ln p_{\theta}(\mathcal{D})$, we have

$$\theta_{\mathsf{ML}} = \arg \max_{\theta} \ l(\theta) = \arg \max_{\theta} \ \sum_{i=1}^{N} \ln p_{\theta}(\mathbf{x}_i)$$

- optimization methods for ML estimation:
 - differential calculus for simple models, e.g., single univariate/multivariate Gaussian, ...
 - Lagrange optimization for models with constraints, e.g., multinomial, markov chain, ...
 - Expectation-Maximization (EM) method for mixture models, e.g., Gaussian mixture models (GMM), hidden Markov models

Formulation 0000	Decision Theory 0000000	Data Modelling 000	Density Estimation	Generative Models

MLE Example: Univariate Gaussian Models

- the training set: $\mathcal{D} = \{x_1, x_2, \cdots, x_N\}$ $(\forall x_i \in \mathbb{R})$
- choose a univariate Gaussian approximate the unknown distribution:

$$p_{\theta}(x) = \mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

the log-likelihood function:

$$l(\mu, \sigma^2) = \sum_{i=1}^{N} \ln p_{\theta}(x_i) = \sum_{i=1}^{N} \left[-\frac{\ln(2\pi\sigma^2)}{2} - \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

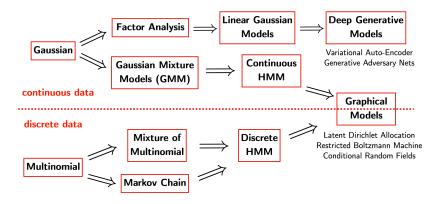
the MLE of the unknown Gaussian mean and variance:

$$\frac{\partial l(\mu, \sigma^2)}{\partial \mu} = 0 \implies \mu_{\mathsf{MLE}} = \frac{1}{N} \sum_{i=1}^N x_i$$
$$\frac{\partial l(\mu, \sigma^2)}{\partial \sigma^2} = 0 \implies \sigma_{\mathsf{MLE}}^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \mu_{\mathsf{MLE}})^2$$

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Formulation	Decision Theory	Data Modelling	Density Estimation	Generative Models
0000	0000000	000		●○

Roadmap of Generative Models



supplementary slides to *Machine Learning Fundamentals* [©] Hui Jiang 2020 published by Cambridge University Press

Generative Models (in a nutshell)

- Gaussian-derived generative models for continuous data
- multinomial-derived generative models for discrete data
- unimodal models: Gaussian, multinomial, Markov chains, generalized linear models, etc.
- mixture models: Gaussian mixture models, hidden Markov models, etc.
- entangled models: factor analysis, linear Gaussian models, deep generative models (e.g. VAE, GAN)
- graphical models: naive Bayes, latent Dirichlet allocation, restricted Boltzmann machine, conditional random fields, etc.
- Bayesian learning: treat model parameters as random variables

• • • • • • • • • • • •