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Unimodal Models

m unimodal models:
o simple generative models with a single peak
o extended to include all bounded monotonic
functions
o unimodality for multivariate models: all
marginal distributions are unimodal
m unimodal models include almost all common
probability distributions, Markov chains,
generalized linear models, etc.

m parameter estimation is straightforward

m suitable for simple data distributions where
the probability mass is concentrated only in a
single region of the space
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Gaussian Models
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Multivariate Gaussian Models (I)

®m given a training set: D = {x1,Xo, - ,xn} ( Vx; € RY)
m choose a multivariate Gaussian distribution to model D:

1 e TE N x—p)

Pus(x) = N(x|p, ) = @m)a|z[2

m the log-likelihood function:

N
(1,2) = ) Inpus(x)
i=1

N

N 1 ,
= C—Eln|2‘—§Z(Xi—H)TE Hxi — n)
i=1
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Gaussian Models
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Multivariate Gaussian Models (II)

N
1
= Xwe = Z(Xz - MMLE)(Xi - NMLE)T

Note that %(xTA_1y> = —(AT)"IxyT(AT)~! (square A)
a%(ln]A\) — (AT = (AT)~! (square A)
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Gaussian Models
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Gaussian Models for Classification

assuming K classes {w1, - ,wgk}, we collect a training set
Dy, for each class wy, (k=1,2,--- , K)

if each feature vector is continuous (€ R?) and follows a
unimodal distribution, we may choose a multivariate Gaussian
for each class, i.e. N(x|u®), =®) (k=1,2,--- | K)

maximum likelihood estimation: Dy — {u&,ﬁ)ﬁzgﬂ}
classify any new x using the plug-in MAP decision rule:

9(x) = arg max Pr(wy)p(x |wy) = arg max A (x| ik, Shie)

assuming all priors Pr(wy) are equiprobable.
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Gaussian Models
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Separation Boundary of Gaussian Models

m quadratic discriminant analysis (QDA)

o Gaussian models lead to quadratic classifiers
o separation boundaries between classes are a
parabola-like quadratic surface

m linear discriminant analysis (LDA)
o use a common covariance matrix

{D1,D2,--- , Dk} — Swe

Dy — pl (k=1,---,K)

o the plug-in MAP rule leads to a linear
separation boundary:

g(x) = arg m;;ix N(X | Ny(ka)a Smie)
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Multinomial Models
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Multinomial Models

m discrete data consists of some independent observations, e.g.
X = {z1,x2, -+ ,xr}, each of which is a distinct symbol

m assume there are M distinct symbols in total

m denote p; as the probability of observing the i-th symbol for
alli=1,2,--- M

m the sum-to-one constraint: M p; =1

m use a multinomial model for X:

(?"1+7"2+-“—|—7"M)!p7«1 o T

p ...p
7“1!7‘2! ---TM! L2 M

Pr(X | p1,p2,--pm) =

where r; (i =1,2,---, M) denotes the frequency of the i-th
symbol appearing in X
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Multinomial Models
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Maximum Likelihood Estimation of Multinomial Models

m estimate all parameters of a multinomial model, i.e.
{p1,p2, - pPm}, from some observation X
m maximize the log-likelihood function:

arg max InPr(X | p1,ps, - pun)
P1,P2,""PM

subject to S pi =1
m construct the Lagrangian function:

M M
‘C(plzp27"' ,pM7>\) = C+ZT1 lnpl - A (sz - 1)

i=1 =1
i) r
— L R S 7)\ =0 = p; = —
o (p1,p2 P, A) pi=

m maximum likelihood estimation:
vaMLE) = L (Z - 1727 . 7M)
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Multinomial Models
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Example: Multinomal Models for DNA Sequences

X = GAATTCTTCAAAGAGTTCCAGATATCCACAGGCAGATTCTACAAAAG
GCACACATCTCAATGAAGTTCCTGAGAAAGCTTCTGTCTAGTTTTTATGCTCT
GAAAATATTTCCTTTTCCATCATGGGCCTCAAAGCGCTCAAAATGAACAAAAC
TTGCAGATACTAGAGAAAGACTGTTT

m assume all nucleotides in a sequence are independent

m p; denotes the probability of observing G at any location, po
for A, p3 for C, py for T

(7“1 +1ro+1r3+ T‘4)! ﬂpri

i

PT(X|p17p27p37p4) = rilrolralr,!
1:72:T3:T4: i=1

m maximum likelihood estimation:

pMe = T8 (i=1,2,3,4)

E?:l i
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Markov Chain
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Markov Chain Models

m multinomial models treat sequence as a bag of symbols by
ignoring the order information

m how to model the sequential information of sequences?

X = {961 Ty T3+ Tp1 Ty $t+1"'9€T}
m consider the product rule:

Pr(X) = pla)p(rafer)p(aalerrs) -
p(ﬂit}ﬂh i 'fUt—l) s 'p(ﬂfT|$1 e 'JJT—1)
m uncontrollable complexity: as a sequence gets longer and

longer, it requires some conditional distributions involving
more and more parameters.
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Markov Chain
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Markov Chain Models: Markov Assumption

m Markov assumption: every random variable in a sequence only
depends on its most recent history, independent from the others
given the most recent history

m 1st-order Markov assumption:

pae | @1 1) = plar | 1)
m 2nd-order Markov assumption:

p(ae|araa) =p(we|ai 2@ 1)

m Markov chain models:

T
Pr(X) = p(z1) H p(2e | zi-1)
=2
T
Pr(X) = P(afl)p(ﬂb ’331) H p(mt | Ti_o xt,l)
=3
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Markov Chain
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Markov Chain Models: Two More Assumptions

m stationary assumption:
o conditional distributions do not change over time

plae e 1) = plow | 701)

o allow to use one conditional distribution for all time instances
m discrete observation assumption: all observations in a sequence
are the same random variable out of a finite set of M distinct
symbols, i.e. {wy,wa, -+ ,wrp}
o represent the conditional distribution as a transition matrix:
A= |: aij :|
MxM
with a;; = Pr (a:t = wj ‘ Ty = wi)
o represent Markov chain models as directed graphs
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Markov Chain
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Example 1. Markov Chain Models for DNA Sequences

m 1st-order Markov chain model for DNA sequence
begin. A C G T end

begin. 0 0.28 0.24 0.25 0.23 0
A 0 0.18 0.27 0.42 0.12 0.01
C 0 0.17 0.36 0.27 0.19 0.01
G 0 0.16 0.34 0.37 0.12 0.01
T 0 0.08 0.35 0.38 0.18 0.01
end 0 0 0 0 0 1

= MLE formula: a{}"® = ") for all (1 <, j < M)

m for any new sequence:
Pr(GAATC) = p(Glbegin)p(A|G)p(A[A)p(T|A)p(C[T)p(end|C)

=0.25x0.16 x 0.18 x 0.12 x 0.35 x 0.01
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Markov Chain
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Example 2: N-gram Language Models

m n-gram language models: use Markov chain models for languages

o each word only depends on its previous word(s)
o a set of word conditional probabilities

E given any sentence:
S = I would like to fly from Toronto to Chicago this Friday

m 1st-order Markov chain (bi-gram model): N? parameters
Pr(S) = p(l|begin) p(would|l) p(like|would) - - - p(end|Friday)

2nd-order Markov chain (tri-gram model): N3 parameters

Pr(S) = p(I|begin) p(would|begin, I) p(like|l, would) - - - p(end|this, Friday)
m zero-order Markov chain (uni-gram model): N parameters

Pr(S) = p(l) p(would) p(like) - -- p(Friday)
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Generalized Linear Models

———{ generalized linear model ——

generalized linear models (GLMs): extend linear regression to deal
with non-Gaussian distributions
select a unimodal probability distribution for output, i.e. p(y)
o e.g. binomial, multinomial, Poisson

choose a link function g(+) to associate the mean of y to a
linear predictor of input x:

Ely] = g(wTx)

o e.g. exp(-), sigmoid, softmax
o the range of the link function must match the domain of mean
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Generalized Linear Models: Some Examples

GLM Yy distribution g(*)
linear regression R Gaussian identity
logistic regression binary binomial sigmoid
probit regression binary binomial probit
Poisson regression count Poisson exp(+)
log-linear model | categorical | multinomial | softmax

Table: Some popular generalized linear models (GLMs)
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GLM Example (1): Logistic & Probit Regression

m GLMs for binary classification: y € {0,1}

m choose binomial distribution for p(y): = ’//
_ /
y~B(y|N=1,p)=p'(1—p)"" {
where E[y] = p € (0,1) /'/f
m logistic regression uses the sigmoid function as
the link function: p = [(wTx) = sigmoid
Bu(ylx) = (Iw™))" (1 = I(wTx))" ™" ) = —
1+e®
m probit regression uses the probit function as the bit
link function: p = ®(wTx) " probi
1
Pw(y|x) = (tb(wa))y (1 — <I>(WTX))1 ! ®(z) = 2 (1+erf(m))
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GLM Example (2): Poisson Regression

m A GLM for count data: y =0,1,2,3,---

m choose Poisson distribution for p(y):

6_A . )\y

where E[y] =A>0
m Poisson regression uses the exponential function as the link
function: A = exp(wTx)

1
ﬁw(y|x) = ? exp (—exp(WTx)) exp (yWTX) y= O) ]-7 25 37 e

m derive the maximum likelihood estimation Wy, ¢
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GLM Example (3): Log-linear Model

A GLM for K-class pattern classification, i.e. y € {w1,ws, - wk}
m use the 1-of-K representation to encode y as a K-dimension
one-hot vector y 2 [y1y2 -+ yx]"
m choose multinomial distribution for p(y):
y ~Mult(y | N=1,p1, - ,px) =1}, pi*
where E[y| = [p1p2 -+ px]’

m choose the softmax function as the link function:

wTx wlx wlx
E[y] = softmax(x) = < £ e

T T T
wlx wlx wlx
DAL D DI PIAIREAL

m log-linear model:

ew]:x Yk

K
ﬁwlr“ WK (y ‘ X) = H

K wTx
i1 \ g €

[C)
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Log-linear Models for Text Categorization

m text categorization: automatically classify text documents into
different categories

m feature engineering: use some pre-defined rules to extract a
fixed-size feature vector x to represent each text document

m use log-linear models as the classifier

given a training set as D = {(x(V,y@) [i=1,2,---N}

m MLE: to maximize log-likelihood function

N K 0 ew;x(i)
I(wi, - Wk) = ;kzlyk In (ZkKl ew;x(i)>
m classify any new document x:
) (wMLE) )7
k = arg max Pr(wk|x) = arg max W
(MLE) =

= argmax X' W,
&
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