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Unimodal Models

unimodal models:

◦ simple generative models with a single peak
◦ extended to include all bounded monotonic

functions
◦ unimodality for multivariate models: all

marginal distributions are unimodal

unimodal models include almost all common
probability distributions, Markov chains,
generalized linear models, etc.

parameter estimation is straightforward

suitable for simple data distributions where
the probability mass is concentrated only in a
single region of the space
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Multivariate Gaussian Models (I)

given a training set: D = {x1,x2, · · · ,xN} ( ∀xi ∈ Rd)

choose a multivariate Gaussian distribution to model D:

pµ,Σ(x) = N (x |µ,Σ) =
1

(2π)d/2|Σ|1/2
e−

(x−µ)ᵀΣ−1(x−µ)
2

the log-likelihood function:

l(µ,Σ) =

N∑
i=1

ln pµ,Σ(xi)

= C − N

2
ln |Σ| − 1

2

N∑
i=1

(xi − µ)ᵀΣ−1(xi − µ)
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Multivariate Gaussian Models (II)

∂l(µ,Σ)

∂µ
= 0 =⇒

N∑
i=1

Σ−1(xi − µ) = 0 =⇒ µMLE =
1

N

N∑
i=1

xi

∂l(µ,Σ)

∂Σ
= 0 =⇒ −N

2
(Σᵀ)−1+

1

2
(Σᵀ)−1

[ N∑
i=1

(xi−µ)(xi−µ)ᵀ
]
(Σᵀ)−1 = 0

=⇒ ΣMLE =
1

N

N∑
i=1

(xi − µMLE)(xi − µMLE)
ᵀ

Note that ∂
∂A

(
xᵀA−1y

)
= −(Aᵀ)−1xyᵀ(Aᵀ)−1 (square A)

∂
∂A

(
ln |A|

)
= (A−1)ᵀ = (Aᵀ)−1 (square A)
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Gaussian Models for Classification

assuming K classes {ω1, · · · , ωK}, we collect a training set
Dk for each class ωk (k = 1, 2, · · · ,K)

if each feature vector is continuous (∈ Rd) and follows a
unimodal distribution, we may choose a multivariate Gaussian
for each class, i.e. N (x |µ(k),Σ(k)) (k = 1, 2, · · · ,K)

maximum likelihood estimation: Dk −→
{
µ
(k)
MLE,Σ

(k)
MLE

}
classify any new x using the plug-in MAP decision rule:

g(x) = arg max
k

Pr(ωk)p(x |ωk) = arg max
k
N (x|µ(k)

MLE,Σ
(k)
MLE)

assuming all priors Pr(ωk) are equiprobable.
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Separation Boundary of Gaussian Models

quadratic discriminant analysis (QDA)

◦ Gaussian models lead to quadratic classifiers
◦ separation boundaries between classes are a

parabola-like quadratic surface

linear discriminant analysis (LDA)
◦ use a common covariance matrix{

D1,D2, · · · ,DK

}
−→ ΣMLE

Dk −→ µ
(k)
MLE (k = 1, · · · ,K)

◦ the plug-in MAP rule leads to a linear
separation boundary:

g(x) = arg max
k
N (x |µ(k)

MLE,ΣMLE)
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Multinomial Models

discrete data consists of some independent observations, e.g.
X = {x1, x2, · · · , xT }, each of which is a distinct symbol

assume there are M distinct symbols in total

denote pi as the probability of observing the i-th symbol for
all i = 1, 2, · · · ,M
the sum-to-one constraint:

∑M
i=1 pi = 1

use a multinomial model for X:

Pr(X | p1, p2, · · · pM ) =
(r1 + r2 + · · ·+ rM )!

r1! r2! · · · rM !
pr11 pr22 · · · p

rM
M

where ri (i = 1, 2, · · · ,M) denotes the frequency of the i-th
symbol appearing in X
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Maximum Likelihood Estimation of Multinomial Models

estimate all parameters of a multinomial model, i.e.
{p1, p2, · · · pM}, from some observation X

maximize the log-likelihood function:

arg max
p1,p2,···pM

ln Pr(X | p1, p2, · · · pM )

subject to
∑M

i=1 pi = 1

construct the Lagrangian function:

L
(
p1, p2, · · · , pM , λ

)
= C +

M∑
i=1

ri · ln pi − λ ·
( M∑

i=1

pi − 1
)

∂

∂pi
L(p1, p2, · · · , pM , λ) = 0 =⇒ pi =

ri
λ

maximum likelihood estimation:

p
(MLE)
i =

ri∑M
i=1 ri

(i = 1, 2, · · · ,M)
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Example: Multinomal Models for DNA Sequences

X = GAATTCTTCAAAGAGTTCCAGATATCCACAGGCAGATTCTACAAAAG

GCACACATCTCAATGAAGTTCCTGAGAAAGCTTCTGTCTAGTTTTTATGCTCT

GAAAATATTTCCTTTTCCATCATGGGCCTCAAAGCGCTCAAAATGAACAAAAC

TTGCAGATACTAGAGAAAGACTGTTT

assume all nucleotides in a sequence are independent
p1 denotes the probability of observing G at any location, p2
for A, p3 for C, p4 for T

Pr(X | p1, p2, p3, p4) =
(r1 + r2 + r3 + r4)!

r1! r2! r3! r4!

4∏
i=1

prii

maximum likelihood estimation:

p
(MLE)
i =

ri∑4
i=1 ri

(i = 1, 2, 3, 4)
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Markov Chain Models

multinomial models treat sequence as a bag of symbols by
ignoring the order information

how to model the sequential information of sequences?

X =
{
x1 x2 x3 · · ·xt−1 xt xt+1 · · ·xT

}
consider the product rule:

Pr(X) = p
(
x1
)
p
(
x2
∣∣x1)p(x3∣∣x1x2) · · ·

p
(
xt
∣∣x1 · · ·xt−1

)
· · · p

(
xT
∣∣x1 · · ·xT−1

)
uncontrollable complexity: as a sequence gets longer and
longer, it requires some conditional distributions involving
more and more parameters.
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Markov Chain Models: Markov Assumption

Markov assumption: every random variable in a sequence only
depends on its most recent history, independent from the others
given the most recent history
1st-order Markov assumption:

p
(
xt
∣∣x1 · · ·xt−1

)
= p
(
xt
∣∣xt−1

)
2nd-order Markov assumption:

p
(
xt
∣∣x1 · · ·xt−1

)
= p
(
xt
∣∣xt−2 xt−1

)
Markov chain models:

Pr(X) = p
(
x1

) T∏
t=2

p
(
xt
∣∣xt−1

)
Pr(X) = p

(
x1

)
p
(
x2

∣∣x1

) T∏
t=3

p
(
xt
∣∣xt−2 xt−1

)
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Markov Chain Models: Two More Assumptions

stationary assumption:

◦ conditional distributions do not change over time

p
(
xt
∣∣xt−1

)
= p
(
xt′
∣∣xt′−1

)
◦ allow to use one conditional distribution for all time instances

discrete observation assumption: all observations in a sequence
are the same random variable out of a finite set of M distinct
symbols, i.e. {ω1, ω2, · · · , ωM}
◦ represent the conditional distribution as a transition matrix:

A =
[

aij

]
M×M

with aij = Pr
(
xt = ωj

∣∣xt−1 = ωi

)
◦ represent Markov chain models as directed graphs
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Example 1: Markov Chain Models for DNA Sequences

1st-order Markov chain model for DNA sequence

MLE formula: a
(MLE)
ij =

r(ωiωj)
r(ωi)

for all (1 ≤ i, j ≤M)

for any new sequence:

Pr(GAATC) = p(G|begin)p(A|G)p(A|A)p(T|A)p(C|T)p(end|C)

= 0.25× 0.16× 0.18× 0.12× 0.35× 0.01
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Example 2: N-gram Language Models

n-gram language models: use Markov chain models for languages

◦ each word only depends on its previous word(s)
◦ a set of word conditional probabilities

given any sentence:

S = I would like to fly from Toronto to Chicago this Friday

1st-order Markov chain (bi-gram model): N2 parameters

Pr(S) = p(I|begin) p(would|I) p(like|would) · · · p(end|Friday)

2nd-order Markov chain (tri-gram model): N3 parameters

Pr(S) = p(I|begin) p(would|begin, I) p(like|I,would) · · · p(end|this,Friday)

zero-order Markov chain (uni-gram model): N parameters

Pr(S) = p(I) p(would) p(like) · · · p(Friday)
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Generalized Linear Models

generalized linear model
x y

generalized linear models (GLMs): extend linear regression to deal
with non-Gaussian distributions

1 select a unimodal probability distribution for output, i.e. p(y)

◦ e.g. binomial, multinomial, Poisson

2 choose a link function g(·) to associate the mean of y to a
linear predictor of input x:

E
[
y
]

= g(wᵀx)

◦ e.g. exp(·), sigmoid, softmax
◦ the range of the link function must match the domain of mean
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Generalized Linear Models: Some Examples

GLM y distribution g(·)

linear regression R Gaussian identity

logistic regression binary binomial sigmoid

probit regression binary binomial probit

Poisson regression count Poisson exp(·)

log-linear model categorical multinomial softmax

Table: Some popular generalized linear models (GLMs)
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GLM Example (1): Logistic & Probit Regression

GLMs for binary classification: y ∈ {0, 1}
choose binomial distribution for p(y):

y ∼ B(y |N = 1, p) = py(1− p)1−y

where E[y] = p ∈ (0, 1)

logistic regression uses the sigmoid function as
the link function: p = l(wᵀx)

p̂w(y|x) =
(
l(wᵀx)

)y(
1− l(wᵀx)

)1−y

probit regression uses the probit function as the
link function: p = Φ(wᵀx)

p̂w(y|x) =
(

Φ
(
wᵀx

))y(
1− Φ

(
wᵀx

))1−y

sigmoid

l(x) =
1

1 + e−x

probit

Φ(x) =
1

2

(
1+erf(x)

)
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GLM Example (2): Poisson Regression

A GLM for count data: y = 0, 1, 2, 3, · · ·
choose Poisson distribution for p(y):

y ∼ p(y |λ) =
e−λ · λy

y!
∀y = 0, 1, 2, 3, · · ·

where E
[
y
]

= λ > 0

Poisson regression uses the exponential function as the link
function: λ = exp(wᵀx)

p̂w(y|x) =
1

y!
exp

(
−exp(wᵀx)

)
exp

(
ywᵀx

)
y = 0, 1, 2, 3, · · ·

derive the maximum likelihood estimation ŵMLE
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GLM Example (3): Log-linear Model

A GLM for K-class pattern classification, i.e. y ∈ {ω1, ω2, · · ·ωK}
use the 1-of-K representation to encode y as a K-dimension

one-hot vector y
∆
=
[
y1 y2 · · · yK

]ᵀ
choose multinomial distribution for p(y):

y ∼ Mult
(
y
∣∣ N = 1, p1, · · · , pK

)
=
∏K

k=1 p
yk
k

where E
[
y
]

=
[
p1 p2 · · · pK

]ᵀ
choose the softmax function as the link function:

E
[
y
]

= softmax(x) =

[
e
w

ᵀ
1 x∑K

k=1
e
w

ᵀ
k
x

e
w

ᵀ
2 x∑K

k=1
e
w

ᵀ
k
x
· · · e

w
ᵀ
K

x∑K
k=1

e
w

ᵀ
k
x

]ᵀ
log-linear model:

p̂w1,··· ,wK
(y |x) =

K∏
k=1

(
ew

ᵀ
kx∑K

k=1 e
wᵀ

kx

)yk
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Log-linear Models for Text Categorization

text categorization: automatically classify text documents into
different categories
feature engineering: use some pre-defined rules to extract a
fixed-size feature vector x to represent each text document
use log-linear models as the classifier
given a training set as D =

{
(x(i),y(i)) | i = 1, 2, · · ·N

}
MLE: to maximize log-likelihood function

l(w1, · · ·wK) =
N∑
i=1

K∑
k=1

y
(i)
k ln

(
ew

ᵀ
k
x(i)∑K

k=1 e
w

ᵀ
k
x(i)

)
classify any new document x:

k̂ = arg max
k

Pr(ωk|x) = arg max
k

e(w
(MLE)
k

)ᵀx∑K
k=1 e

(w
(MLE)
k

)ᵀx

= arg max
k

xᵀw
(MLE)
k

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 11


	Gaussian Models
	Multinomial Models
	Markov Chain Models
	Generalized Linear Models

