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Mixture Models

m mixture models: a mixture of some component distributions
M
po(¥) =Y wm - fo,(x)
m=1

where 68 = {wm,Om lm=1,2,--- ,M} denotes all model
parameters

m mixture weights satisfy 2%21 Wy = 1

m each component distribution fg_ (x) is normally a simpler
unimodal distribution, e.g. Gaussian, multinomial,...

m more generally, fg(x) is chosen from the exponential family
(e-family)
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Exponential Family (e-family)

m exponential family (e-family) includes all probabilistic models
that can be reparameterized as:

fo(x) = exp (A(fc) +xTA— K()\))

A = g(0) is called natural parameters
X = h(x) is called sufficient statistics
K () is a normalization term:

[ fo(x)dx =1 = K(A)=1n [ /. (A(h(x))—l—(h(x))T)\)dx]
m take logarithm: In fo(x) = A(X) + XTA — K(A)

m e.g. Gaussian, binomial, multinomial,beta, Dirichlet ...

[e]
o
[e]

m products of e-family distributions still belong to e-family
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Exponential Family (e-family): Some Examples

| Jelx) | Xx=g(0) [ x=hx) | KX [ A®
univariate 1
Gaussian )i\ )2\\ _5)‘%//\2
N(x|p,0?) | [0 1/0?] | [x,—22/2] +2In()\2) —21In(2m)
multivariate 1yTy—1!
Gaussian /—51\ ,)/\i\ —3A1A2 A
Nx|pX) [E_lu,E_l] [x, —$xxT] +2 In|Aq] —gln(27r)
—_dip(2
Gaussian f n(2m)
(mean only) —5 In|X|
N(x | p,30) ° 5% —IATESIA | —IxTEg
Multinomial | [Inp1,---,
C- chlj:l Py lnpD] b 0 In(C)
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Gaussian mixture model (GMM)

in order to model multi-modal distributions of
x € R?, we may consider a group of Gaussians:

M
po(x) = Z Wy - N (X | pm, i) M\
m=1

o mixture weights w,, satisfy Z%Zl Wy = 1

o mean vector and covariance matrix of m-th
Gaussian component: pu,,, and X, for all
m=12--- M

o if M is large enough, a GMM can
approximate any arbitrary distribution in R¢
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Maximum Likelihood Estimation of Mixture Models

m it is not trivial to estimate mixture models

m given some training data D = {x1,X2, - ,XN}

the log-likelihood function of a mixture model contains
log-sum

e.g. the log-likelihood function of GMMs

N
l<{wm, [T Em}) = Zln (

m can we switch log-sum into sum-log?

M

W N(xz ‘ ﬂ'myzm)>
1

m=
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Expectation-Maximization (EM) Method

m log-likelihood function of mixture models:

N M
:Zlnpg(xl Zln(Zwm fe,, (x; >
=1

m=1

m treat index m as a latent variable: an unobserved random
variable taking values in {1, 2, ,M}

m given any model ("), compute a conditional probability
distribution of m based on data x;:

wiy - St (%i)
S Wi Fom (x2)

where we have "M Pr(m|x;,00) = 1 for any x;

Pr(m|x;, 0 =

(Vm=1,2,--+, M)
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Auxiliary Function Q(8|0™) (1)

define an auxiliary function of 8 as follows:

useOhere
QB16™) = ZE [0 (wn - fo,, (xi)) | x5,60] + C

N M

= > > nfwn- fo, ()] - Pr(m|x;,0™) +C

i=1 m=1

where C' is a constant defined as the sum of the entropy of the
above conditional probability distributions:

CEH H(0™|6™) ZZlnPr (m | xi, 0™) Pr(m | x;, 0™)

i=1 m=1
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Auxiliary Function Q(8|0™) (I1)

the auxiliary function Q(0|0™) satisfies the following three properties:
Q(6]6™)) and 1(0) achieve the same value at (™) :

Q™) =)

6=0("™)
Q(6]6™) is tangent to 1(0) at O(™):

2Q(016™)
BL

a1(8)

26 ‘ezam

b=
For all 6 # 0™, Q(0|0™) is located strictly below 1(8):

Q(6]0™) <i(0) (V0 #6™)
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Auxiliary Function Q(8|0™) (1l

the auxiliary function Q(8]0™) is related to 1(8) like this:
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Auxiliary Function Q(8|0™) (1V)

Proof:
m Bayes theorem Pr(y|z) = p;a(ca,};) — plz) = Ifr(?yzlla)f)

m apply to the model pg(m,x), we have
po(x) = % = Inpe(x) = Inpg(m,x)—InPr(m|x, 0)
m multiply Pr(m|x,8) to both sides, and sum over all
m={1,2,--- , M}:

M
Z In pg(x) - Pr(m|x,0M™) = Z In pg(m, x) - Pr(m|x, ™)
m=1

M
Z In Pr(m|x, ) - Pr(m|x, 8)

m=1
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Auxiliary Function Q(8|0™) (V)

Proof (continued):

m substitute x with every training sample x; in D and sum over
all N samples, so we have

N
Z Inpg(x;) =
i=1

In pg(m, x;) - Pr(m|x;, 9("))

WE
WE

.
Il
—
i
—

In Pr(m|x;, 0) - Pr(m|x;, 8)

M=
M=

1

3
Il

(2

= we have M Pr(m|x,0(") =1

m po(m, x;) = Pr(m|0)pe(x;|m) = wp, - fa,, (Xi)
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Auxiliary Function Q(8|0™) (VI)

Proof (continued):
m substituting Q(0|60(™) into the above

1(0) = Q616™) + Z Z In Pr(m|x;, 0™) Pr(m|x;, 8™)

N M

— Z In Pr(m|x;, 8) Pr(m|x;, 0" ):|

i=1 m=1

e[ Pr(m|x;,0) ()
= Qo )+Z|:ZIH(W)Pr(m|Xi,0 )}
i=1 bm=1 ©

KL (Pr(mix;,00m)]| Pr(m|x;.8)) >0
> Q016"

m properties 1 and 3 are proved
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Auxiliary Function Q(8|0™) (VII)

Proof (continued):
m from above, we have

ole) _ 0Q(e|e™) oH(0]6™)

00— 00 00
with
OH (60 B i [i Pr(m|x;, 0™)  Pr(mlx;, )}
00 o—6(m) —~ | £ Pr(m[x;,0) 00 o)
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Expectation-Maximization (EM) Algorithm

EM algorithm

initialize 0©), set 1 = 0 P
while not converged do 9("‘*3"- 206
E-step: av)
N
Q010™) = "E,, [ln (Wi - fo,, (%)) ‘Xiv 9(")} W/ Qo)
M-step:
if fo,, (x) belongs to
(n+1) _ (n) "6
0 are Mg @(616™) e-family, Q(-) is concave and
n=ndtl M-step can be solved in
end while closed-form.
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Convergence Analysis of EM algorithm (1)

Theorem 2

Each EM iteration guarantees to improve [(0):

Furthermore, the improvement of the log-likelihood function is not
less than the improvement of the auxiliary function:

160 +D) ~ 1(6™) > Q(Bl6™) - Qo16™)

9= (n-+1) )
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Convergence Analysis of EM algorithm (I1)

Proof:
m property 1 = [(8(")) = Q(O\O‘“))\e:mm
m M-step — Q(0!9("))‘9:9(n+1) > Q(9|9(n))|9:0<n)
m property 3 = [(8("+1)) > Q(eyo(n))‘o:e(nﬂ)

O +D) > QO™ _giri = QO™ g_grwy = 16™)

m therefore, we have 101y > 1(0(”)) and
(6T +1)) —1(8™)) > Q(816™)]y_g(ir) — QO10™)]5_g0)
|
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Gaussian mixture model (GMM)

Gaussian mixtures models (GMMs):

M
polx) = 3w N | i S) PNASYAY
m=1

o mixture weights w,, satisfy 2%21 Wy, = 1 O

o mean vector and covariance matrix of m-th
Gaussian component: i, and X, for all
m=1,2--,M

o if M is large enough, a GMM can
approximate any arbitrary distribution in R¢
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EM algorithm for GMMs (1)

m denote

Wi N (x|, 250

(") (x) = (n)y _
) (x) = Pr(m|x, ™) M (2

m given a set of training data {x1, - ,xn}

m E-Step: construct the auxiliary function

Q(016™) =

Al [ S| (%5 = pn) T8 (%1 = Bn) ] o0
ZZ [lnwm— 5 9 ] ()(Xi)

=1 m=1
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EM algorithm for GMMs (II)

m M-step: forallm=1,2,--- M

0QOI6™) _ ey _ T (<) x
p) RS =y Y
Hm Doicn &m (%)
9Q(016™)
0%, =0 =

n n n+1
sty _ i (i) (6 = pin ) ki — p )T

Zi]\i1 57(":11) (xi)
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EM Algorithm for GMMs

given a training set as D = {x1,X2, - , XN}

EM algorithm for GMMs

initialize {wly, piY, =0}, set n =0
while not converged do
E-step: forallm=1,--- ,M andi=1,--- | N:

{wi, u? B0 {xi} — {€f) (x)}

M-step: forallm=1,--- , M:

{eW =)} {xi} — {wGth, plitD, 50}

n=n+1
end while
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K-means Clustering

use k-means clustering to initialize GMMs:

D —— M disjoint clusters: C1 UCs---UCyy

Top-down K-means Clustering

k=1
initialize the centroid of C4
while £ < M do
repeat
assign each x; € D to the nearest cluster among C,--- ,Cj
update the centroids for the first & clusters: Cy,--- ,Cy
until assignments no longer change
split: split any cluster into two clusters
k=k+1
end while
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Hidden Markov Models

HMMs: mixture models for sequences

evaluation problem: Forward-Backward algorithm

decoding problem: Viterbi algorithm

training problem: Baum-Welch algorithm

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 12



HMMs
0®00000000000000000000

Markov Chain Models: Revisit

m Markov chain models are unimodal models
for sequences

o given a state sequence s = {wawiwiws },

Pr(s) = Pr(wawiwiws) = 7o Xaz1 Xai1 Xais

m Markov chain models belong to e-family

m assume each state deterministically omits a
unique observation symbol

o for an observation sequence o = {Ug’l)l’l)lvg}

Pr(o) = Pr(vevivivs) = Pr(wswiwiws)

= T2 X ag1 X a1 X a13
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Hidden Markov Models (1)

m hidden Markov models (HMM): mixture
models for sequences

m each HMM state can generate all possible
symbols based on a unique probability
distribution

m HMMs are a doubly-embedded stochastic
process to generate symbols
o Markov assumption: state transition is a
1st-order Markov chain
o output independence assumption: the
probability of generating an observation only Pr(o,s) = m2Xba2 xa21 xb11
depends on the current state xa1 X bi1 X a1z X b3s

o= {’Uz’UlUl'Ug,}

is generated from

S = {w2w1w1w3}
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Hidden Markov Models (II)

m extend to deal with sequences of
continuous observations

m what about the underlying state sequence
s is hidden?

m an HMM has to sum over all possible
state sequences:

0 = ({X1X2X3X4

Pr(o) = Y..s Pr(o,s) { }

S = {wzwlwlwg}

m HMMs are mixture models for sequences:

Pr(o) =3 scs Pr(s) - p(ofs)
where > s Pr(s) =1

Pr(o,s) = w2 X pa(x1)
Xaz1 X p1 (Xg) X a11 X p1 (X3)><

a13 X p3 (X4)
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Hidden Markov Models (III)

m an HMM, denoted as A, includes:
o N Markov states: Q) = {wl,wg, . ~wN}
o initial state probabilities:
m={m|i=1,2,-- N}, where m; = m(w;)
o state transition probabilities:
A= {aij | 1 < Z,j < N}, where Qg5 = a(wi,wj)
o state-dependent probability distributions:
B = {bi(x)]i=1,2,--- N}, where b;(x) = b(x]w;)
m an HMM can compute the probability of observing any

sequence of T" observations: o = {x1,x2, -+ ,x7}
T
pa(0) =Y palo,s)= Y m(s1)b(xals1) [ [ a(si—1,s0)b(xese)
S S1--8ST t=2

= Z m(s1)b(x1]s1)a(s1, $2)b(x2|s2) - - - a(sr—1, $7)b(X7|ST)

S1--ST
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Evaluation Problem

how to compute pa(0)?

a brute-force method requires to sum O(N7T) terms
forward algorithm: use dynamic programming method to
compute this summation recursively from left to right

Z m(s1)b(x1]s1) a(s1, s2)b(x2|s2) - - - a(sT—1, s7)b(X7|sT)

s1:-8T

:Z<

sg-sp Nsp=1

ay(s1)
N

ai(s1)a(si, SQ)b(xQ\82)) a(s2,s3) -+ a(sr—1, s7)b(Xr|sT)

az(s2)
N

Z ( Z a2(52)a(82,53)b(X3\53)) a(ss, s4) -+ -a(sr—1, sT7)b(Xr|sT)

83+ ST so=1

asz(s3) _
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Evaluation Problem: Forward Algorithm

=( > ara(er a(er 1, s e i:

sT sp_1=1

ar(sT)

m the above forward procedure requires
O(T x N?) operations
m denote forward probabilities:

£

£
g
O10J6)

kS
@

LA
(1) = au(se)
St=w;

€
z
~®-

m run the forward algorithm in a 2-D lattice
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Evaluation Problem: Backward Algorithm

backward algorithm: use dynamic programming method to
compute recursively from right to left

m(s1)b(x1]s1) - - - a(sr—1, s7)b(x7r|sT)
> .

S1°008T

= Deyspy T(51) (SZG(ST—l,ST)b(XT|ST)) :2 8

Br—1(sT-1)

=5 wlstalsn) (X aen,sa)blea)n(ss)

s2

B1(s1) Vt=1,---,T;i=1,---,N

— ZSI 7(s1)b(x1]s1)B1(s1)
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Evaluation Problem: Forward & Backward Algorithm

HMM forward-backward algorithm Vt=1,2,---,T

input: an HMM A and a sequence 0 = {x1,x2, - x7}

N
output: {at(i),ﬁt(i) | t=1,---,T,i=1,--- 7N} pa(0) = Z oy (1) Bu (4)
i=1
initiate a1 (j) = m;b;(x1) forall j=1,2--- /N
fort=2,3,--- T do €.g
for j=1,2,--- ,N do N
() = Sy e (D)aby(xe) _ ,
end for pa(0) = Z ar(i)
end for =1
initiate Br(j) =1forall j=1,2--- N
fort=T—-1,---,1do N
fori=1,2,--- ,N do . .
LN : pa(0) =) ai(i)Bi(z)
Be(i) = 311, i (Xe41)Ber (5) ;
end for
end for
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Decoding Problem

m recover the most probable state sequence s* for any o

*
8" = argmax pa (o, s)

m Viterbi algorithm: dynamic programming to find s* recursively
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Decoding Problem: Viterbi Algorithm

Viterbi algorithm for HMMs

input: an HMM A = {Q, 7, A, B} and a sequence 0 = {x1,x3, - X1}
output: Viterbi path s* and pa (o, s*)

initiate 1 (j) = m;b;(x1) forall j =1,2--- | N
fort=2,3,--- ,T do
for j=1,2,---,N do
7(J) = (maXZN=1 ’Yt—l(i)aij)bj(xt)
0¢(j) = argmax;L; y—1(i)ay
end for
end for
termination: pa (0,s*) = max)\, yr(i)
path backtracking: s* = {s}s} ---sh} with s% = argmax(Y, yr(i)
and sf_; = 0(s)) fort =T,---,2
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Training Problem

= how to estimate HMM parameters A = {m, A, B}
m collect a training set of variable-length sequences:

D:{Jannw&m}

where each o(") = {xgr),xg), - x(Ti)} denotes a sequence of
T, observations (r =1,2--- R)
m maximum likelihood estimation:

R
Ay e = arg max Z Inpa (O(T))

r=1
R
= argmax Z In ZpA (0(’")7 S(T))
r=1 s(r)

m use EM algorithm: leading to the Baum-Welch algorithm

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 12



HMMs
000000000000e000000000

E-Step: Auxiliary Function Q(A|A™) (1)

R
QUAIA™) = 3 By [Inpa(o),s1) [0, AT]
r=1

= ZZlnpA (r) T))Pr( (r) {o(r A("))

r=1 S('r)
where
Tr—1
pa(ot),s) = 77(5 H a St 75t+1 Xt?lysgi)l)
t=1
Pr (s o™, AM) = pae (07,87) — ppe (o), 50)

Pam (00)) ) pam (0),5()
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E-Step: Auxiliary Function Q(A|A™) (1)

Q(A|AM)
R T, N
+ YD b)) Prsy” = wi [ o), A)
r=1 t=1 i=1
Q(B[B(™)
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E-Step: Auxiliary Function Q(A|A™) (1)

77§ )( 5) 2 p, (Sgr) — Wi, Sngr)l = w; ‘O(r)7A(n))
(0, s{" ... s (r) (1))

>, (1)...o(") (7)) PAG) 41, Wis Wy, Syilg -+ - S

ngr)ms(f) DPAM) (O(T‘)7 Sgr)7 Sgr) .. 8%))

t t+1

o P @DagbeBN0) e w

M (7”]) - N (r) —>. :. 3>
Z =19r, ( ) / aijbj(xt+1)§ \
forall1<t<T,and 1 <i,j <N 4—' '—>
(i) : Br1(d)
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E-Step: Auxiliary Function Q(A|A™) (IV)

use nlgr)(i,j) to re-write all auxiliary functions as:
R N
Qalx™) =33 w1, 5)
r=1i=1 j=1
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M-Step: 7 and A

m initial probabilities 7:

2 (@) A m - 1) =0 =

ORI > )y AW L (Y
Zf:l 2521 Zjvzl ngr) (4, 7)

m transition probabilities A: considering Zj a;; = 1 for all 4

ROARY POHED Sristy nng) (4,7)

i R Tr—1 N o
PORED P Zj:l ngr)(lv])

7
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M-Step: B for discrete HMMs

m B consists of all multinomial models in all HMM states
1=1,2,---,N:

B={b|1<i<N1<k<K}

m auxiliary function:

N N K
QBB™) =355 3" S by - (" — vp) -0 (i, )

m updating formula:

p(n D) _ i i j-vzl ", 7) - 6" — )

SE S SN 0, )
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Gaussian Mixture Continuous Density HMMs (1)

m continuous HMMs: each state
is associated with a p.d.f. of
continuous observations

m use a GMM for each state 2} {w2,3}
M

bi(x) = Y Wi N(X | fim, Zim)
m=1

m B is composed of all GMM

parameters: i /0N R
B:{u- Sy wim |1 < i < N,
i B i ATAYARAVARA
L<m< M} {wn1} {w2} {3} {ws 1} {ws2} {ws,3}
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Gaussian Mixture Continuous Density HMMs (1)

(2) Pr (sﬁ” =w, " =m | o, A(”))
Pr (SET) = w; O(?ﬂ)7 A(">) Pr (ly) =m | SET) = wi, o(r)7 A("))

= Zjv 1 mr)(z 7) EN ggr)(i,m)

(3) Oim) = Prl” =m|s!” = w,x", AM)
(n)N( (r) |”(n) E("))

m

er\r{ lwm)N( T)‘ (n) 2(”))

'Lm7
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Gaussian Mixture Continuous Density HMMs (111)

After M-Step, we derive the updating formulas for all Gaussian
mixture HMMs:

S S S 0 )& 6 m)
" DRHIND DD DAIND i R R DI ()
R r N r r
N(n+l> Do Zle ZJ 1 "ii )( )& & )('L m) - x ( )
" Ef:1 tT;1 Z;V 1 77?)( ) (T)(Z m)
. [ T T n+1 T n+1)\T
SRS S D e m) (x7 = ) (7 = )
DRHIND DD DN RIS (R

2(”+1)

m
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Training Problem: Baum-Welch Algorithm

Baum-Welch algorithm for HMMs

input: a training set {0 |r =1,2,--- R}
output: HMM parameters A = {W,A,B}

initialize A(® = {W(O),A(O),IB(O)}; set n =0
while not converged do
zero numerator/denominator accumulators for all parameters
forr=1,2,--- /R do
1. forward-backward algorithm: {0, A™} — {a{” (), 8" (i)}
2. {a” (), 87 @)} — {09, &7 (,m)}
3. accumulate all numerator/denommator statistics
end for
update all parameters as the ratios of statistics —» A (™1
n=n+1
end while
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