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Entangled Models
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Entangled Models (1)

Borel isomorphism theorem

Given a normally distributed random variable z ~ A/ (0, 1), for any
smooth probability distribution p(x) (x € R%), there exist LP
functions: fi(z),---, fa(2) to convert z into a vector

f(2) = [fi(2) -+ fa(2)]" so that f(2) follows this distribution, i.e.

f(2) ~ p(x).

o(2) p(x)

=0 g
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Entangled Models (II)

m entangled models: combine simple models with a complex
transformation to derive complex models

m linear vs. non-linear transformations

m disentangled representation learning

o entangling assumption: independent features z, called factors,
are entangled by a mixing function x = f(z) to observations x

o add residual noises to compute likelihood

o disentangling: x — z

m three subgroups of entangled models:
o linear Gaussian models: Gaussian + linear transformation
o non-Gaussian models: non-Gaussian + linear transformation
o deep generative models: Gaussian + neural networks
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Entangled Models (III)
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Entangled Models (V)
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entangled factor residual mixing
models z ~ p(z) € ~ p(e) f(z)
probabilistic N(z]0,T) N (|0, 5°T) Wz
PCA linear
factor N(z|0,T) N(e|0,D) Wz
analysis D: diagonal linear
ICA L pi(2) — Wz
non-Gaussian linear
IFA L pi(2) N(g|0,A) Wz
factorial GMM linear
HOPE mixture model | A(g|0, o°T) Wz
(movMF/GMM) W: orthogonal
VAE N (z]0,T) N (0, 5°T) f()yerr
neural nets
GAN N(z]0,T) - f(yerr
neural nets
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Learning of Entangled Models

Jacobian method: if the mixing function is invertible and
differentiable
o entangled models = maximum likelihood estimation

pa(x) = | I | pa(fi' (%)) oo (f5 ' (x))

o disentangling: z = f;'(x)
marginalization method
o entangled models = maximum likelihood estimation

o) = [ paa)p (x— 15 W)) da

o disentangling:

p(z,%) _ pa(z)py (x — f(z; W))
p(x) [ pa(z)pu(x— f(z; W)) dz

p(z[x) =
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Linear Gaussian Models

m linear Gaussian models are a group of simple entangled models
m factors z follow a zero-mean multivariate Gaussian:

p(z) = N(z|0,%,)
m residual € follows another multivariate Gaussian
ple) = N(e|p, 32)
m the mixing function is linear:
f(z; W) =Wz
m linear Gaussian models:

pA(X) = N(X } /L,Wzle + 22)
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Probabilistic PCA

m probabilistic PCA: a special case of liner Gaussian models
m factor distribution: p(z) = N (z|0,1)
m residual distribution: an isotropic covariance Gaussian
po(e) = N(e | p,0%I)
m probabilistic PCA models: pa (x) = N (x ’ p, WWT + 521
m the log-likelihood function
N 1=
(W, pu,0°) = C—% In [WWT+0°1 }—5 > (xi—p) T (WWT+0"T) ' (i —pa)
i=1
m maximum likelihood estimation W, = a rotation of
principle components in regular PCA
m disentangling: p(z|x) = N(z |IM™'WT(x — p), 0_2M>
where M = WTW + o021
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Factor Analysis (1)

probabilistic PCA: a special case of liner Gaussian models
factor distribution: p(z) = N (z|0,1)
residual distribution: a diagonal covariance Gaussian

p(e) = N(e|p, D)

where D € R%*? is a diagonal covariance matrix
m factor analysis models:

pa(x) =N (x| p, WWT + D)

the log-likelihood function:
I(W,D)=C — Z;[[ln [ WWT D |+ tr((WWT 4 D)_IS)}

m no closed-form solution for maximum likelihood estimation
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Factor Analysis (I1)

alternating MLE method

Input: the sample covariance matrix S
Output: W and D

randomly initialize Dg; set t = 1
while not converged do

11
1. construct P; using the n leading eigenvectors of D, % SD, %
1
2. W, =D}P;
3. D, = diag(s - Wtwg)
4. t=t+1
end while
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Non-Gaussian Entangled Models

use a non-Gaussian factor distribution and a linear mixing function

m Independent Component Analysis (ICA)

p(z) = I1;- p(z) = [Tj=, m

m Independent Factor Analysis (IFA)

M
p(Zj) = Zmzl ’LU]'mN(Zj |:U'jm7 O—sz)

m Hybrid Orthogonal Projection and Estimation Figure: the normal

(HOPE) distribution vs. the
o p(z) is a mixture model in R” heavy—tail distribution
o p(g) is a zero-mean isotropic covariance p(z) in ICA

Gaussian in R4™": p(e) = M(e|0,5°I)
o ‘W is an orthogonal matrix
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Non-Gaussian Models
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Independent Component Analysis (ICA)

m ICA is used for blind source separation
m use a linear transformation to recover z from x

z=W lx
m the log-likelihood function:

N n
(W™ =" "Inp(wlx;) + Nln |[W™'|

i=1 j=1

m maximum likelihood estimation: use any
gradient descent methods to maximize (W 1)
with respect to W1

zl )) ‘"'x_\m :
i

L]
blind source
separation
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Deep Generative Models

combine a simple Gaussian with a complex non-linear mixing
function

use a deep neural network W for the mixing function:
x = f(z; W)

cannot explicitly evaluate the likelihood function

no direct way to disentangle: p(z|x)

use some tricks to bypass these difficulties:
variational autoencoders (VAE)

generative adversarial nets (GAN)

normalizing flows
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Deep Generative Models
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Variational Autoencoders (VAE): Formulation

m use a Gaussian ¢(z|x) to approximate the intractable
distribution p(z|x) as:

p(z[x) ~ q(z[x)

A .
m ¢(z|x) = N(z| px, Xx) has x-dependent mean and covariance
m introduce another deep neural network V, called encoder:

[ux x| = h(x; V)

m derive a lower bound for the intractable log-likelihood:

L(W,V,0x)
LW, o|x) 20

0060) = KL (atal0)pa)) + { By [ p(x12)] ~ KL (atal0) () |
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Deep Generative Models
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Variational Autoencoders (VAE): Optimization

m VAE aims to learn both W and V:

arg max Z (W, V,o|x;)

N
— arg max Z {Eq(zxi)[lnp(xi|z)] - KI—(Q(Z|X1‘)HP(Z)>}

m use sampling for expectation: z; ~ ¢(z|x;) = N(z| px,, Xx,),
G
then Ey(ix,) [ Inp(xi|z)] ~ e > j—1 Inp(xi|z;)
m a reparameterization trick: €; ~ N (e]0,I), then

G
1 1
Eq(z\xi) [lnp(xi ‘ Z)] ~ 5 ZIHP(XZ‘ ‘ chiej + /J/xi)
j=1
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Variational Autoencoders (VAE)

N(0.1) é_ entangled model

X? ................................
hﬁ _ﬂ
encoder decoder
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Deep Generative Models
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Generative Adversarial Nets (GAN)

m introduce a discriminator V
to replace the intractable
likelihood function

m use a pure sampling-based
training procedure

m equilibrium: V cannot
distinguish fake samples
from the true samples

m equilibrium = Wis a
good entangled model for
the data distribution
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