Entangled Models

Linear Gaussian Models

Non-Gaussian Models

Deep Generative Models

Chapter 13 Entangled Models

supplementary slides to Machine Learning Fundamentals [©]Hui Jiang 2020 published by Cambridge University Press

August 2020

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Entangled Models	Linear Gaussian Models	Non-Gaussian Models	Deep Generative Models
00000	0000	00	

Outline

2 Linear Gaussian Models

- 3 Non-Gaussian Models
- 4 Deep Generative Models

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Entangled Models	Linear Gaussian Models	Non-Gaussian Models	Deep Generative Models
00000			

Entangled Models (I)

Borel isomorphism theorem

Given a normally distributed random variable $z \sim \mathcal{N}(0, 1)$, for any smooth probability distribution $p(\mathbf{x})$ ($\mathbf{x} \in \mathbb{R}^d$), there exist L^p functions: $f_1(z), \dots, f_d(z)$ to convert z into a vector $f(z) = [f_1(z) \cdots f_d(z)]^{\mathsf{T}}$ so that f(z) follows this distribution, i.e. $f(z) \sim p(\mathbf{x})$.

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Entangled Models	Linear Gaussian Models	Non-Gaussian Models	Deep Generative Models
0000			

Entangled Models (II)

- entangled models: combine simple models with a complex transformation to derive complex models
- linear vs. non-linear transformations
- disentangled representation learning
 - entangling assumption: independent features z, called *factors*, are entangled by a mixing function $\mathbf{x} = f(\mathbf{z})$ to observations x
 - o add residual noises to compute likelihood
 - \circ disentangling: $\mathbf{x} \longmapsto \mathbf{z}$
- three subgroups of entangled models:
 - $\circ~$ linear Gaussian models: Gaussian + linear transformation
 - $\circ~$ non-Gaussian models: non-Gaussian + linear transformation
 - $\circ~$ deep generative models: Gaussian + neural networks

Linear Gaussian Models

Non-Gaussian Models

Deep Generative Models

Entangled Models (III)

supplementary slides to Machine Learning Fundamentals [©]Hui Jiang 2020 published by Cambridge University Press

Entangled Models	Linear Gaussian Models	Non-Gaussian Models	Deep Generative Models
00000			

Entangled Models (IV)

entangled	factor	residual	mixing
models	$\mathbf{z} \sim p(\mathbf{z})$	$\boldsymbol{\varepsilon} \sim p(\boldsymbol{\varepsilon})$	$f(\mathbf{z})$
probabilistic	$\mathcal{N}(\mathbf{z} 0,\mathbf{I})$	$\mathcal{N}(\boldsymbol{\varepsilon} 0,\sigma^{2}\mathbf{I})$	Wz
PCA			linear
factor	$\mathcal{N}(\mathbf{z} 0,\mathbf{I})$	$\mathcal{N}(oldsymbol{arepsilon} 0,\mathbf{D})$	Wz
analysis		\mathbf{D} : diagonal	linear
ICA	$\prod_i p_i(z_i)$	—	$\mathbf{W}\mathbf{z}$
	non-Gaussian		linear
IFA	$\prod_i p_i(z_i)$	$\mathcal{N}(oldsymbol{arepsilon} oldsymbol{0},oldsymbol{\Lambda})$	Wz
	factorial GMM		linear
HOPE	mixture model	$\mathcal{N}(\boldsymbol{\varepsilon} 0, \sigma^2 \mathbf{I})$	Wz
	(movMF/GMM)		\mathbf{W} : orthogonal
VAE	$\mathcal{N}(\mathbf{z} 0,\mathbf{I})$	$\mathcal{N}(\boldsymbol{\varepsilon} 0,\sigma^{2}\mathbf{I})$	$f(\cdot) \in L^p$
			neural nets
GAN	$\mathcal{N}(\mathbf{z} 0,\mathbf{I})$	—	$f(\cdot) \in L^p$
			neural nets

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

æ

Entangled Models	Linear Gaussian Models	Non-Gaussian Models	Deep Generative Models
00000			

Learning of Entangled Models

- **1** Jacobian method: if the mixing function is invertible and differentiable
 - $\circ~$ entangled models $\implies~$ maximum likelihood estimation

$$p_{\mathbf{\Lambda}}(\mathbf{x}) = \big| \mathbf{J} \big| p_{\mathbf{\lambda}}(f_1^{-1}(\mathbf{x})) p_{\boldsymbol{\nu}}(f_2^{-1}(\mathbf{x})) \big|$$

• disentangling: $\mathbf{z} = f_1^{-1}(\mathbf{x})$

2 marginalization method

 \circ entangled models \implies maximum likelihood estimation

$$p_{\Lambda}(\mathbf{x}) = \int_{\mathbf{z}} p_{\lambda}(\mathbf{z}) p_{\nu}(\mathbf{x} - f(\mathbf{z}; \mathbf{W})) d\mathbf{z}$$

• disentangling:

$$p(\mathbf{z}|\mathbf{x}) = \frac{p(\mathbf{z}, \mathbf{x})}{p(\mathbf{x})} = \frac{p_{\lambda}(\mathbf{z})p_{\nu}\left(\mathbf{x} - f(\mathbf{z}; \mathbf{W})\right)}{\int_{\mathbf{z}} p_{\lambda}(\mathbf{z})p_{\nu}\left(\mathbf{x} - f(\mathbf{z}; \mathbf{W})\right) d\mathbf{z}}$$

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Entangled Models	Linear Gaussian Models	Non-Gaussian Models	Deep Generative Models
	0000		

Linear Gaussian Models

linear Gaussian models are a group of simple entangled models

factors z follow a zero-mean multivariate Gaussian:

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z} \mid \mathbf{0}, \mathbf{\Sigma}_1)$$

• residual ε follows another multivariate Gaussian

$$p(\boldsymbol{\varepsilon}) = \mathcal{N}(\boldsymbol{\varepsilon} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}_2)$$

the mixing function is linear:

$$f(\mathbf{z};\mathbf{W}) = \mathbf{W}\mathbf{z}$$

linear Gaussian models:

$$p_{\mathbf{\Lambda}}(\mathbf{x}) = \mathcal{N}(\mathbf{x} \, \big| \, \boldsymbol{\mu}, \mathbf{W} \boldsymbol{\Sigma}_1 \mathbf{W}^\intercal + \boldsymbol{\Sigma}_2)$$

Entangled Models	Linear Gaussian Models	Non-Gaussian Models	Deep Generative Models
	0000		

Probabilistic PCA

- probabilistic PCA: a special case of liner Gaussian models
- factor distribution: $p(\mathbf{z}) = \mathcal{N}(\mathbf{z} \mid \mathbf{0}, \mathbf{I})$
- residual distribution: an isotropic covariance Gaussian $p_{\sigma}(\boldsymbol{\varepsilon}) = \mathcal{N}(\boldsymbol{\varepsilon} \mid \boldsymbol{\mu}, \sigma^2 \mathbf{I})$
- probabilistic PCA models: $p_{\Lambda}(\mathbf{x}) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \mathbf{W}\mathbf{W}^{\intercal} + \sigma^{2}\mathbf{I})$
- the log-likelihood function

$$l(\mathbf{W}, \boldsymbol{\mu}, \sigma^2) = C - \frac{N}{2} \ln \left| \mathbf{W} \mathbf{W}^{\mathsf{T}} + \sigma^2 \mathbf{I} \right| - \frac{1}{2} \sum_{i=1}^{N} (\mathbf{x}_i - \boldsymbol{\mu})^{\mathsf{T}} \left(\mathbf{W} \mathbf{W}^{\mathsf{T}} + \sigma^2 \mathbf{I} \right)^{-1} (\mathbf{x}_i - \boldsymbol{\mu})$$

 \blacksquare maximum likelihood estimation $\mathbf{W}_{\mbox{\tiny MLE}} \implies$ a rotation of principle components in regular PCA

• disentangling:
$$p(\mathbf{z} | \mathbf{x}) = \mathcal{N} \left(\mathbf{z} | \mathbf{M}^{-1} \mathbf{W}^{\mathsf{T}} (\mathbf{x} - \boldsymbol{\mu}), \sigma^{-2} \mathbf{M} \right)$$

where $\mathbf{M} = \mathbf{W}^{\mathsf{T}} \mathbf{W} + \sigma^{2} \mathbf{I}$

Entangled Models	Linear Gaussian Models	Non-Gaussian Models	Deep Generative Models
	0000		

Factor Analysis (I)

- probabilistic PCA: a special case of liner Gaussian models
- factor distribution: $p(\mathbf{z}) = \mathcal{N}(\mathbf{z} \mid \mathbf{0}, \mathbf{I})$
- residual distribution: a diagonal covariance Gaussian

$$p(\boldsymbol{\varepsilon}) = \mathcal{N}(\boldsymbol{\varepsilon} \mid \boldsymbol{\mu}, \mathbf{D})$$

where $\mathbf{D} \in \mathbb{R}^{d \times d}$ is a diagonal covariance matrix a factor analysis models:

$$p_{\Lambda}(\mathbf{x}) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \mathbf{W}\mathbf{W}^{\mathsf{T}} + \mathbf{D})$$

the log-likelihood function:

$$l(\mathbf{W}, \mathbf{D}) = C - \frac{N}{2} \left[\ln \left| \mathbf{W} \mathbf{W}^{\mathsf{T}} + \mathbf{D} \right| + \mathsf{tr} \left(\left(\mathbf{W} \mathbf{W}^{\mathsf{T}} + \mathbf{D} \right)^{-1} \mathbf{S} \right) \right]$$

no closed-form solution for maximum likelihood estimation

Non-Gaussian Models

Deep Generative Models

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Factor Analysis (II)

alternating MLE method

Input: the sample covariance matrix ${\bf S}$ Output: ${\bf W}$ and ${\bf D}$

randomly initialize D_0 ; set t = 1while not converged **do**

1. construct \mathbf{P}_t using the *n* leading eigenvectors of $\mathbf{D}_{t-1}^{-\frac{1}{2}} \mathbf{SD}_{t-1}^{-\frac{1}{2}}$

2.
$$\mathbf{W}_t = \mathbf{D}_t^{\frac{1}{2}} \mathbf{P}_t$$

3. $\mathbf{D}_t = \text{diag} \left(\mathbf{S} - \mathbf{W}_t \mathbf{W}_t^{\mathsf{T}} \right)$
4. $t = t + 1$

end while

Entangled Models	Linear Gaussian Models	Non-Gaussian Models	Deep Generative Models
		•0	

Non-Gaussian Entangled Models

use a non-Gaussian factor distribution and a linear mixing function

Independent Component Analysis (ICA)

$$p(\mathbf{z}) = \prod_{j=1}^{n} p(z_j) = \prod_{j=1}^{n} \frac{4}{\pi(e^{z_j} + e^{-z_j})}$$

Independent Factor Analysis (IFA)

$$p(z_j) = \sum_{m=1}^{M} w_{jm} \mathcal{N}(z_j \mid \mu_{jm}, \sigma_{jm}^2)$$

- Hybrid Orthogonal Projection and Estimation (HOPE)
 - $\circ \ p(\mathbf{z})$ is a mixture model in \mathbb{R}^n
 - $p(\varepsilon)$ is a zero-mean isotropic covariance Gaussian in \mathbb{R}^{d-n} : $p(\varepsilon) = \mathcal{N}(\varepsilon \mid \mathbf{0}, \sigma^2 \mathbf{I})$
 - $\circ~\mathbf{W}$ is an orthogonal matrix

Figure: the normal distribution vs. the heavy-tail distribution p(z) in ICA

Deep Generative Models

Independent Component Analysis (ICA)

- ICA is used for blind source separation
- $\hfill \,$ use a linear transformation to recover z from x

$$\mathbf{z} = \mathbf{W}^{-1}\mathbf{x}$$

the log-likelihood function:

$$l(\mathbf{W}^{-1}) = \sum_{i=1}^{N} \sum_{j=1}^{n} \ln p(\mathbf{w}_{j}^{\mathsf{T}} \mathbf{x}_{i}) + N \ln \left| \mathbf{W}^{-1} \right|$$

 maximum likelihood estimation: use any gradient descent methods to maximize l(W⁻¹) with respect to W⁻¹

Entangled Models	Linear Gaussian Models	Non-Gaussian Models	Deep Generative Models
			00000

Deep Generative Models

- combine a simple Gaussian with a complex non-linear mixing function
- use a deep neural network \mathbb{W} for the mixing function:

 $\mathbf{x} = f(\mathbf{z}; \mathbb{W})$

- cannot explicitly evaluate the likelihood function
- \blacksquare no direct way to disentangle: $p(\mathbf{z}|\mathbf{x})$
- use some tricks to bypass these difficulties:
 - 1 variational autoencoders (VAE)
 - 2 generative adversarial nets (GAN)
 - 3 normalizing flows

Entangled Models Linear Gaussian Models Non-Gaussian Models

Deep Generative Models

Variational Autoencoders (VAE): Formulation

• use a Gaussian $q(\mathbf{z}|\mathbf{x})$ to approximate the intractable distribution $p(\mathbf{z}|\mathbf{x})$ as:

 $p(\mathbf{z}|\mathbf{x}) \approx q(\mathbf{z}|\mathbf{x})$

• $q(\mathbf{z}|\mathbf{x}) \stackrel{\Delta}{=} \mathcal{N}(\mathbf{z} | \boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{x}})$ has x-dependent mean and covariance • introduce another deep neural network \mathbb{V} , called *encoder*:

$$\left[\boldsymbol{\mu}_{\mathbf{x}} \; \boldsymbol{\Sigma}_{\mathbf{x}}\right] = h(\mathbf{x}; \mathbb{V})$$

derive a lower bound for the intractable log-likelihood:

$$\underbrace{\lim_{l(\mathbb{W},\sigma|\mathbf{x})}}_{\ln p(\mathbf{x})} = \overbrace{\mathsf{KL}(q(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}|\mathbf{x}))}^{\geq 0} + \overbrace{\left\{\mathbb{E}_{q(\mathbf{z}|\mathbf{x})}\left[\ln p(\mathbf{x}|\mathbf{z})\right] - \mathsf{KL}(q(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))\right\}}^{L(\mathbb{W},\mathbb{V},\sigma|\mathbf{x})}$$

Entangled Models Linear	r Gaussian Models	Non-Gaussian Models	Deep Generative Models
			00000

Variational Autoencoders (VAE): Optimization

 \blacksquare VAE aims to learn both $\mathbb W$ and $\mathbb V:$

$$\arg \max_{\mathbb{W},\mathbb{V},\sigma} \sum_{i=1}^{N} L(\mathbb{W},\mathbb{V},\sigma|\mathbf{x}_i)$$

$$\implies \arg \max_{\mathbb{W}, \mathbb{V}, \sigma} \sum_{i=1}^{N} \left\{ \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})} \left[\ln p(\mathbf{x}_{i}|\mathbf{z}) \right] - \mathsf{KL} \left(q(\mathbf{z}|\mathbf{x}_{i}) \| p(\mathbf{z}) \right) \right\}$$

• use sampling for expectation: $\mathbf{z}_j \sim q(\mathbf{z}|\mathbf{x}_i) = \mathcal{N}(\mathbf{z} \mid \boldsymbol{\mu}_{\mathbf{x}_i}, \boldsymbol{\Sigma}_{\mathbf{x}_i})$, then $\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i)} \left[\ln p(\mathbf{x}_i|\mathbf{z}) \right] \approx \frac{1}{G} \sum_{j=1}^G \ln p(\mathbf{x}_i|\mathbf{z}_j)$ • a reparameterization trick: $\boldsymbol{\epsilon}_j \sim \mathcal{N}(\boldsymbol{\epsilon} \mid \mathbf{0}, \mathbf{I})$, then

$$\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i)}\left[\ln p(\mathbf{x}_i \mid \mathbf{z})\right] \approx \frac{1}{G} \sum_{j=1}^G \ln p(\mathbf{x}_i \mid \mathbf{\Sigma}_{\mathbf{x}_i}^{\frac{1}{2}} \boldsymbol{\epsilon}_j + \boldsymbol{\mu}_{\mathbf{x}_i})$$

Linear Gaussian Models

Non-Gaussian Models

Deep Generative Models 00000

Variational Autoencoders (VAE)

Generative Adversarial Nets (GAN)

- introduce a discriminator V to replace the intractable likelihood function
- use a pure sampling-based training procedure
- equilibrium: V cannot distinguish fake samples from the true samples
- equilibrium ⇒ W is a good entangled model for the data distribution

