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Entangled Models (I)

Borel isomorphism theorem

Given a normally distributed random variable z ∼ N (0, 1), for any
smooth probability distribution p(x) (x ∈ Rd), there exist Lp

functions: f1(z), · · · , fd(z) to convert z into a vector
f(z) =

[
f1(z) · · · fd(z)

]ᵀ
so that f(z) follows this distribution, i.e.

f(z) ∼ p(x).

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 13



Entangled Models Linear Gaussian Models Non-Gaussian Models Deep Generative Models

Entangled Models (II)

entangled models: combine simple models with a complex
transformation to derive complex models

linear vs. non-linear transformations

disentangled representation learning

◦ entangling assumption: independent features z, called factors,
are entangled by a mixing function x = f(z) to observations x

◦ add residual noises to compute likelihood
◦ disentangling: x 7−→ z

three subgroups of entangled models:

◦ linear Gaussian models: Gaussian + linear transformation
◦ non-Gaussian models: non-Gaussian + linear transformation
◦ deep generative models: Gaussian + neural networks
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Entangled Models (III)
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Entangled Models (IV)

entangled factor residual mixing
models z ∼ p(z) ε ∼ p(ε) f(z)

probabilistic N (z|0, I) N (ε|0, σ2I) Wz
PCA linear

factor N (z|0, I) N (ε|0,D) Wz
analysis D: diagonal linear

ICA
∏
i pi(zi) − Wz

non-Gaussian linear

IFA
∏
i pi(zi) N (ε|0,Λ) Wz

factorial GMM linear

HOPE mixture model N (ε|0, σ2I) Wz
(movMF/GMM) W: orthogonal

VAE N (z|0, I) N (ε|0, σ2I) f(·) ∈ Lp
neural nets

GAN N (z|0, I) − f(·) ∈ Lp
neural nets
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Learning of Entangled Models

1 Jacobian method: if the mixing function is invertible and
differentiable
◦ entangled models =⇒ maximum likelihood estimation

pΛ(x) =
∣∣ J
∣∣ pλ(f−11 (x)

)
pν
(
f−12 (x)

)
◦ disentangling: z = f−11 (x)

2 marginalization method
◦ entangled models =⇒ maximum likelihood estimation

pΛ(x) =

∫
z

pλ(z)pν
(
x− f(z;W)

)
dz

◦ disentangling:

p(z|x) = p(z,x)

p(x)
=

pλ(z)pν
(
x− f(z;W)

)∫
z
pλ(z)pν

(
x− f(z;W)

)
dz
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Linear Gaussian Models

linear Gaussian models are a group of simple entangled models

factors z follow a zero-mean multivariate Gaussian:

p(z) = N (z
∣∣0,Σ1)

residual ε follows another multivariate Gaussian

p(ε) = N (ε
∣∣µ,Σ2)

the mixing function is linear:

f(z;W) = Wz

linear Gaussian models:

pΛ(x) = N (x
∣∣µ,WΣ1W

ᵀ + Σ2)
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Probabilistic PCA

probabilistic PCA: a special case of liner Gaussian models

factor distribution: p(z) = N (z
∣∣0, I)

residual distribution: an isotropic covariance Gaussian
pσ(ε) = N (ε

∣∣µ, σ2I)

probabilistic PCA models: pΛ(x) = N
(
x
∣∣µ,WWᵀ + σ2I

)
the log-likelihood function

l(W,µ, σ2) = C−N
2

ln
∣∣WWᵀ+σ2I

∣∣−1

2

N∑
i=1

(xi−µ)ᵀ
(
WWᵀ+σ2I

)−1
(xi−µ)

maximum likelihood estimation WMLE =⇒ a rotation of
principle components in regular PCA

disentangling: p(z |x) = N
(
z
∣∣M−1Wᵀ(x− µ), σ−2M

)
where M = WᵀW + σ2I
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Factor Analysis (I)

probabilistic PCA: a special case of liner Gaussian models

factor distribution: p(z) = N (z
∣∣0, I)

residual distribution: a diagonal covariance Gaussian

p(ε) = N (ε
∣∣µ,D)

where D ∈ Rd×d is a diagonal covariance matrix
factor analysis models:

pΛ(x) = N
(
x
∣∣µ,WWᵀ + D

)
the log-likelihood function:

l(W,D) = C − N

2

[
ln
∣∣∣WWᵀ + D

∣∣∣+ tr
((

WWᵀ + D
)−1

S
)]

no closed-form solution for maximum likelihood estimation
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Factor Analysis (II)

alternating MLE method

Input: the sample covariance matrix S
Output: W and D

randomly initialize D0; set t = 1
while not converged do

1. construct Pt using the n leading eigenvectors of D
− 1

2
t−1SD

− 1
2

t−1

2. Wt = D
1
2
t Pt

3. Dt = diag
(
S−WtW

ᵀ
t

)
4. t = t+ 1

end while
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Non-Gaussian Entangled Models

use a non-Gaussian factor distribution and a linear mixing function

Independent Component Analysis (ICA)

p(z) =
∏n
j=1 p(zj) =

∏n
j=1

4

π(e
zj+e

−zj )

Independent Factor Analysis (IFA)

p(zj) =
∑M
m=1 wjmN (zj |µjm, σ2

jm)

Hybrid Orthogonal Projection and Estimation
(HOPE)

◦ p(z) is a mixture model in Rn
◦ p(ε) is a zero-mean isotropic covariance

Gaussian in Rd−n: p(ε) = N (ε |0, σ2I)
◦ W is an orthogonal matrix

Figure: the normal
distribution vs. the
heavy-tail distribution
p(z) in ICA
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Independent Component Analysis (ICA)

ICA is used for blind source separation

use a linear transformation to recover z from x

z = W−1x

the log-likelihood function:

l(W−1) =

N∑
i=1

n∑
j=1

ln p(wᵀ
j xi) +N ln

∣∣W−1∣∣
maximum likelihood estimation: use any
gradient descent methods to maximize l(W−1)
with respect to W−1

blind source
separation
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Deep Generative Models

combine a simple Gaussian with a complex non-linear mixing
function

use a deep neural network W for the mixing function:

x = f(z;W)

cannot explicitly evaluate the likelihood function

no direct way to disentangle: p(z|x)
use some tricks to bypass these difficulties:

1 variational autoencoders (VAE)

2 generative adversarial nets (GAN)

3 normalizing flows
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Variational Autoencoders (VAE): Formulation

use a Gaussian q(z|x) to approximate the intractable
distribution p(z|x) as:

p(z|x) ≈ q(z|x)

q(z|x) ∆
= N (z |µx,Σx) has x-dependent mean and covariance

introduce another deep neural network V, called encoder :[
µx Σx

]
= h(x;V)

derive a lower bound for the intractable log-likelihood:

l(W,σ|x)︷ ︸︸ ︷
ln p(x) =

≥0︷ ︸︸ ︷
KL
(
q(z|x)

∥∥p(z|x))+
L(W,V,σ|x)︷ ︸︸ ︷{

Eq(z|x)
[
ln p(x|z)

]
− KL

(
q(z|x)

∥∥p(z))}
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Variational Autoencoders (VAE): Optimization

VAE aims to learn both W and V:

arg max
W,V,σ

N∑
i=1

L(W,V, σ|xi)

=⇒ arg max
W,V,σ

N∑
i=1

{
Eq(z|xi)

[
ln p(xi|z)

]
− KL

(
q(z|xi)

∥∥p(z))}
use sampling for expectation: zj ∼ q(z|xi) = N (z |µxi ,Σxi),

then Eq(z|xi)
[
ln p(xi|z)

]
≈ 1

G

∑G
j=1 ln p(xi|zj)

a reparameterization trick: εj ∼ N (ε |0, I), then

Eq(z|xi)
[
ln p(xi

∣∣ z)] ≈ 1

G

G∑
j=1

ln p(xi
∣∣Σ 1

2
xiεj + µxi)

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 13



Entangled Models Linear Gaussian Models Non-Gaussian Models Deep Generative Models

Variational Autoencoders (VAE)
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Generative Adversarial Nets (GAN)

introduce a discriminator V
to replace the intractable
likelihood function

use a pure sampling-based
training procedure

equilibrium: V cannot
distinguish fake samples
from the true samples

equilibrium =⇒ W is a
good entangled model for
the data distribution
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