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Graphical Models

m graphical models: a graphical representation for generative
models

m a graphical model essentially represents a joint distribution of
some random variables

o a node for a random variable
o an arc for relationship between random variables

m two different types of graphical models:
directed graphical models, a.k.a. Bayesian networks, use
directed arcs, representing conditional distributions
undirected graphical models, a.k.a. Markov random fields, use
undirected arcs
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Bayesian Networks

m each directed arc represents a conditional
distribution among nodes p(ylz)

m a Bayesian network (BN) represents a way @ O
to factorize a joint distribution of all
underlying random variable

N p(z1)
p(331,$2, e ,ZL'N) = H p(l‘l | pa(xz))
=1
m e.g. a joint distribution of 5 R.V.'s: plaslor, 2)

p($17$2>$37~r47x5)
= p(z1) - p(zz|z1) - p(as|z, z2) -

p(za|T1, 2, 13) - p(ws|21, T2, T3, T4)

p(z5|T1, T2, T3, T4)
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Bayesian Networks: A Sparse Example

m why use graphical representations for joint
distributions?

m a sparse graph indicates some conditional
independence among variables

p(xla T2,T3,T4,T5,T6, 337)
= p(z1) p(z2) p(z3) p(z4|T1, 22, 23)
p(ws|w1, 23) p(we|ra) p(27|74, T5)

m if each conditional distribution is chosen
from e-family, a Bayesian network
represents another distribution in e-family
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Bayesian Networks for Discrete Random Variables

m all nodes represent discrete random variables

m an M-value random variable  is encoded as  [10 - o], [o1 0], -+ o0 1]
a 1-of-M vector x = [:cl To + -+ xM]T
m conditional probabilities are stored as tables Y
pij EPr(z=i|y=j)=Pr(mi=1y; =1) * Bij
m notations for conditional distributions
M N
plely) =px|y) =TI wi” ==
i=1j=1
M N K . z Wik
p(z]y,2) = p(x|y,2) HHH ik 2
i=lj=1k=1 Y
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Bayesian Networks: Outline

Conditional Independence

Represent Generative Models as Bayesian Networks
Learning Bayesian Networks

Inference Algorithms

Case Study (I): Naive Bayes Classifier

@ Case Study (II): Latent Dirichlet Allocation
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Conditional Independence

m two random variables are independent

rly <= pz,y) =p)p(y)

m two random variables are conditionally independent

rlylz <= pl,y|z)=p|z)pyl?)

m a missing link in Bayesian networks normally indicates some
conditional independence among variables

m conditional independence: useful for interpreting data and
simplifying computation

m how to identify conditional independence in Bayesian
networks?
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Confounding

m confounding: a fork junction pattern z < z — y,
where z is called a confounder

p(z,y,2) = p(2) - p(zl2) - p(yl2)
iy p(z|2) p(yl2)
m unconditionally dependent: a confounder

introduces spurious association

zfy <= plz,y)#p)ply)

m conditionally independent:

zly | z = p(z,y|2) =pl=z|z)p(ylz) hot weather

m the ice-cream example \O

o eating ice-cream = drowning in pool?

o confounding # causation ice-cream  drown in pool
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B a chain junction pattern x — 2z — v,
where z is called a mediator

p(@,9,2) = p(a) (1) - plole) Yy N
m unconditionally dependent: a mediator
introduces spurious association p(z)
vty < plz,y) #p)pQy)
m conditionally independent: .
cooking
vlylz <= plzylz) = plelz)pyl2)
m the cooking example \O
o hungry = burning fingers?
o mediating # causation hungry burning
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Colliding

m a colliding junction pattern x — z <y,
where z is called a collider

p(@,y,2) = p() - p(y) - p(z| 2, y)
m unconditionally independent:
vLly < plz,y) =p)py)
m conditionally dependent:
clylz = ple,ylz) #plzl2)plylz)

m the explain-away phenomenon
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Colliding Causes Explain-away

m there exist two independent causes raining leaking
for a common effect @ e
m observing one will explain away
another
@ wet

m the wet driveway example
o rain = wet driveway
o leaking pipe = wet driveway Pr(R=1) =0.1
o after observing the wet driveway Pr(L =1) =0.01
(W = 1), we have Pr(W =1|R=1,L=1) = 0.90
Pr(W =1|R=1,L=0)=0.80
(W=1|R=0,L=1)=0.50
(W=1|R=0,L=0)=0.20

Pr(R=1|W = 1) = 0.3048
Pr(R=1|W =1,L=1)=0.1667 Pr
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Conditional Independence: d-separation Rule

m for any three disjoint subsets A, B and C,
AlB ‘ C <= any path between A
and B is blocked by C'

m a.k.a. A and B are d-separated by C'
m a path is blocked by C' if both hold:

all confounders and mediators along the
path belong to C'

neither any collider nor any of its
descendants belongs to C

m e.g. we can verify:
a)if‘c alb‘c
a,,l/_c‘f aJ_b’f 6lb|f
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Bayesian Networks: Representing Generative Models (1)

m Gaussian models: m Bayesian learning of Gaussian models:

p(Xi) —N( z‘“vz) p(u,Xl,"'XN) :p(u,)Hp(Xi’[,l,)
=1

X1 X2 XN
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Bayesian Networks: Representing Generative Models (II)

m Gaussian mixture models (GMMs):

o latent variable: the index is encoded as a

1-of-M vector z; = [Zil Zig * - ZiM}
M im
o pl@) =TIy (wn)’ § —
o p(xi|zi) = Hn]\le (N<Xi | o, Em)) Zi
m joint distribution:
p(Xlw" y XN, Z1, " 7ZN) = Hf\;l p(Zi)p(Xi|Zi) X
3
m marginal distribution: N
- J
p(x1,- - ,XN) = Hi—vﬂ (Z p(Zi)p(X¢|Zi))
Z;

x;
© Hui Jiang 2020 published by Cambridge University Press
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Bayesian Networks: Representing Generative Models (I1I)

m Bayesian learning of Gaussian mixture models (GMMs):
p(w) = Dir(w { a(o))
M
plzi|w) =[] (wm)™™ Vi=12--N

1

p(Sn) =W (S, |09, vD) Vm=1,2,---M

1
pmm!Em):N(um\vﬁfkwM) ¥m=1,2,--- M

M .
p(xi | Zi, {Hm, S }) = H ( Xi|Mm,Em))zl Vi=1,2,---N

m=1
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Bayesian Networks: Representing Generative Models (V)

m Markov chain models oO—0 00—

o lst-order: p(z;|z;—1) 1 T T3 24
o 2nd-order: p(x;|z;i_1,2;—2)

= hidden Markov models (HMMs) m

p(817"' y ST, X1, " 7XT)

= p(s)p(xals1) [T p(selse—1)p(eelst)

t=2
p(x1, -, x7) = Z p(s1, -+, 87, X1, X7)

51,
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Learning of Bayesian Networks

m structure learning: an unsolved open problem

B parameter estimation

o a Bayesian network: pg(z1, 2,23, )
o MLE using full data observations: simple

{(mgl)wgl)’mg)’...), (x§2>7$;2)7mg2)’...)7...(x(li>,x(2i),méi),...)7...}
10) =" Inpe(ai”, 2, af’, )
o MLE using partially ob;erved data: requires EM method
{(x§1>,*7xg1>7...)7 (@2, 5,2, ), 7(x§i>7*,mgi>,...),...}

l(0) = Z In Z pg(xgl),mg,mél), N )
i T
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Bayesian Networks: Inference Problem

m inference problem: infer any conditional distribution using BNs

p(l‘l,CL’Q,x;}, L4y, T5, L6, L7, L8y " " )
N A i LA

observed x interested y  missing z

p(xy) _ 2, P(%y,2)
p(x) Dy, p(xYy,2)

m the key is how to compute any summation efficiently

p(y|x) =

m efficiency depends on the network structure

o sparser networks = more efficient inference methods
o densely structured networks are generally hard to infer
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Bayesian Networks: Inference Algorithms

inference applicable | complexity
algorithm graphs
brute-force all O(KT)
Forward-Backward chain O(T - K?)
exact Sum-Product tree O(T - K?)
inference (Belief Propagation)
Max-Sum tree O(T - K?)
Junction Tree all O(KP)
Loopy Belief Propagation all -
approximate Variational Inference all -
inference Expectation Propagation all -
Monte Carlo Sampling all -
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Forward-Backward: Message-Passing on a Chain (1)

O—>O—> O—O—O—'O—'O

Tn Tn+1

p(x1, @, -+ wr) = plen)p(@eler) - - plealen—1) - - plerfrr—1)
consider any marginal distribution p(x,,)

plzn) = Z D> Z p(z2|z1)p(ws|zs) - - p(zr|rr—1)

Tp—1 Tn+1

( ) p<x1>---p<xn|mn_1>)( > plewalen) - plarler))

Tl Tp—1 Tp41 2T
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Forward-Backward: Message-Passing on a Chain (Il)

an(zn)
az(z3)
az(z2)
pan) = (3 poteas) o ( Sotosten (Zapl::) (axlen) ) )
(IZ p(Tn1|Tn) - (zz; p(zr—1]|rT—2) (;P(xT\CUT—l)) ) )

Br-1(zr—1)

Br—2(zr_2)

Bn(zn)
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Forward-Backward: Message-Passing on a Chain (1ll)

summations are computed recursively =—> message passing

ay (a2 Qn-1 Qp
— —
@@= - =@ OO
O D & e —

Bn B Bra Br

extended to any other marginal distributions:
o for any unobserved variable x;_1 or x4, 1 .
ar(we) = >, P(@e]we-1) ar1(x-1)
Be(ze) =324, P(@esr|e) Bea (we41)
o for an observed variable x; 66D el PG

P(aelae-) aulee)

= [}LE;) ] o7

41 (Te41) = p(Tet1]oe) o ()

Bo= ] Bin
Tt=Wp

B, [ufﬁ*” ]' Bri

Bi—1 (-thl) = p(l’t ‘mt—l)ﬁt(l't)

Tr=wy,
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Monte Carlo Sampling

D=0;n=0
while n < N do

1. sampling a:é ") p(z2)
2. sampling 33‘(1 ") p(zy | ZE1,53§”),1%3)
3. sampling xé ") p(w6 | iﬁin))
4. sampling x(7 M~ p(ar |25, #5)
5. D<= DU{M, &) p(z1), pla2), plas)
6. n=n+1 p(wa|z1, 02, 73)
end while plas|e, @), p(aslra)
p(z7|z4, 5)
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Case Study (I): Naive Bayes Classifier

m naive Bayes assumption: all features are conditionally
independent given the class label

m naive Bayes classifiers: the simplest BN structure

p(y,x1, 22, yxa) = py)p(@r|y)p(z2]y) - - p(zaly) y
d
= p) ] plaily)
=1
m train each p(x;|y) separately O O oo O
m inference is also simple T T2 Td
d
Y= argmax p(yle1, 22, -, %a) = argmax p(y) 11 pily)
=1
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Case Study (II): Latent Dirichlet Allocation (1)

m topic modeling for text documents

o a document mentions a few topics
o each topic is described by a unique
distribution of words

The Willan Randolph Fearst vilgie o Lincoln Gentr, Metopol

tan Opers o New York Pl and Julird School. “Our b et tht we nd 3

.. . Tes oppotniy to make & mark o the e o the performing e with thse 7o an 36

m latent Dirichlet allocation ( LDA) : cvery b s mporant as our radionl areas of . i eal, medical cducation

and the social Hearst Randolph A. Hearst said Monday in

Lincoln Cemers share ill be for it new which

f h d I . will young artists and new The Metropolitan Opera Co. and

New York Prlbamonic will cach. The Jlld Schoe, where music. and

© Tor each document, sample a topic 0, e P

. . . . . of the Lincoln Center Consolidated Corporate will make its usual

distribution (multinomial)

6; ~ p(6) =Dir(0 | o)

o for j-th location in i-th document words labelled by the same color

come from the same topic

1. sample a topic z;;:
Zij ~ p(Z | 01) = MUlt(Z l 01)
2. sample a word from
Zijk
wi; ~ 15, (I\/Iult(wij |ﬂk)) ’
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Case Study (II): Latent Dirichlet Allocation (2)

m latent Dirichlet allocation (LDA):

o topic distributions as © = {6, |1 <i < M} 6: ()

o all words in all documents as
WZ{Wz‘j|1§i§M;1§j§Ni}

o all sampled topics as
Z={z;|1<i<M;1<j<Ni}

p(®,Z, W) Hp )ﬂp(zij |6:) p(Wij | 2i5)

p(zi; | 6:) = Mult(zi; | 0:) LDA parameters:
K o a € RX
p(Wij | 24j Mult wl B
Jl J kl;{( Jl k)) OﬁeRKXV
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Study (I1): Latent Dirichlet Allocation (3)

m training problem: maximize the likelihood function

N;
p(W; a,B) /// p(0:) [T D> p(zi;16:) p(wis | 2i;) d6: - - s
01001 — 1

J=1 z;;

inference problem:

p(©,Z,W) p(©,Z, W)
(W) [f]e Xz p(©,2,W)d®

m both are computationally intractable

p(©,Z|W) =

m approximation by a variational distribution
p(©,Z| W) ~ ¢(©,Z) qu |v) H (zi; | Pis)
m learn o and 3 by maximizing a variational Iower—bound of

p(W; a,8)
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Markov Random Fields: Maximum Cliques

m Markov random fields: use undirected graphs

o a node —> a random variable
o a undirected link # a conditional distribution

m conditional independence <= topological

connection
ceg. ALB | C
m cliques: any set of fully-connected nodes ~ a6
o {x1,x2}, {w1, 22,23}, {22, 24}, etc. 3
m maximum cliques: not contained by another o
clique

x7
© {$1,$2,$3}, {$2,$4}, {$4,l’5}, {xe,l“?}
Zs

Zq
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Markov Random Fields: Potential and Partition Functions

m potential function ¢ (-): any non-negative function defined over all
variable in a maximum clique

o use the exponential function: tc(x.) = exp ( — E(x))
o E(x.) is called the energy function
o exponential potential functions = a Boltzmann distribution

m joint distribution of an MRF: a product of the potential functions of
all maximum cliques, divided by a normalization term

po) = o [T welxo)

m 7 is called the partition function: Z =3%"_ []. ve(xc)
m MRFs are hard to learn due to the intractable partition function

m all BN inference algorithms are equally applicable to MRFs
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Case Study (Ill): Conditional Random Fields

m conditional random fields (CRFs) define a

conditional distribution between two sets of X1 Xz X7
random variables
Hc wC(YmX) y2
p(Y[X) = ST Y X
Y c 1/JC( Cy ) Y1
Y4
m each potential function is defined on X and a
maximum clique of Y 3
m linear-chain CRFs: all Y nodes form a chain
X1 X2 X3 X7
p(Y | X) — HZ;I ¢(YtaYt+17X)
Sy 2 v(ye, yee1, X)
k O-O0-0-+ 0
P(ye, yir1, X) = exp (Z wy, - fk(Yt7Yt+1:X)) i y2 ¥ yr
k=1
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Case Study (IV): Restricted Boltzmann Machines (1)

m restricted Boltzman machines (RBMs) define a
joint distribution of some bipartite random
variables

o visible variables: v; € {0,1} (1 <i <)
o hidden variables: h; € {0,1} (1 <j < J)

m maximum cliques: any {v;, h;} (Vi, )

m potential functions:
’l/J(Ui, hj) = exp (aivi + bjhj + wz-jvihj)

m the joint distribution:

p(v1,~~~,vlvh1,~~',h :—exp<2azv,+2bh JrZszﬂ)z )

=1 j=1
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Case Study (IV): Restricted Boltzmann Machines (2)

al bl U1 hl
a—= b= v = h= W:{wm]

IxJ
ajy bJ vr hJ

= RBM in matrix form: p(v,h) = £ exp (aTv +bTh + vTWh)

m conditional independence in RBMs:
I

J
p(h{V):Hp(hj\V) p(VIh):Hp(’Ui)h)

where Pr(h; = 1|v) and Pr(v; = 1| h) are sigmoids.
m learning RBMs is not trivial due to the partition function; needs
sampling methods
~p(v,h)
arg max p(v) = arg Inax
I1# H Zh p(v;h)

veD
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