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Concepts Bayesian Networks Markov Random Fields

Graphical Models

graphical models: a graphical representation for generative
models

a graphical model essentially represents a joint distribution of
some random variables

◦ a node for a random variable
◦ an arc for relationship between random variables

two different types of graphical models:

1 directed graphical models, a.k.a. Bayesian networks, use
directed arcs, representing conditional distributions

2 undirected graphical models, a.k.a. Markov random fields, use
undirected arcs
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Concepts Bayesian Networks Markov Random Fields

Bayesian Networks

each directed arc represents a conditional
distribution among nodes

a Bayesian network (BN) represents a way
to factorize a joint distribution of all
underlying random variable

p(x1, x2, · · · , xN ) =
N∏
i=1

p
(
xi | pa(xi)

)
e.g. a joint distribution of 5 R.V.’s:

p(x1, x2, x3, x4, x5)

= p(x1) · p(x2|x1) · p(x3|x1, x2) ·
p(x4|x1, x2, x3) · p(x5|x1, x2, x3, x4)
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Concepts Bayesian Networks Markov Random Fields

Bayesian Networks: A Sparse Example

why use graphical representations for joint
distributions?

a sparse graph indicates some conditional
independence among variables

p(x1, x2, x3, x4, x5, x6, x7)

= p(x1) p(x2) p(x3) p(x4|x1, x2, x3)
p(x5|x1, x3) p(x6|x4) p(x7|x4, x5)

if each conditional distribution is chosen
from e-family, a Bayesian network
represents another distribution in e-family
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Concepts Bayesian Networks Markov Random Fields

Bayesian Networks for Discrete Random Variables

all nodes represent discrete random variables

an M -value random variable x is encoded as
a 1-of-M vector x =

[
x1 x2 · · · xM

]ᵀ
conditional probabilities are stored as tables

µij
∆
= Pr(x = i

∣∣ y = j) = Pr(xi = 1
∣∣ yj = 1)

notations for conditional distributions

p(x | y) = p(x |y) =
M∏
i=1

N∏
j=1

µ
xiyj
ij

p(x | y, z) = p(x |y, z) =
M∏
i=1

N∏
j=1

K∏
k=1

µ
xiyjzk
ijk

[ 1 0 ··· 0 ], [ 0 1 ··· 0 ], · · · , [ 0 0 ··· 1 ]
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Bayesian Networks: Outline

1 Conditional Independence

2 Represent Generative Models as Bayesian Networks

3 Learning Bayesian Networks

4 Inference Algorithms

5 Case Study (I): Naive Bayes Classifier

6 Case Study (II): Latent Dirichlet Allocation
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Concepts Bayesian Networks Markov Random Fields

Conditional Independence

two random variables are independent

x ⊥ y ⇐⇒ p(x, y) = p(x)p(y)

two random variables are conditionally independent

x ⊥ y
∣∣ z ⇐⇒ p(x, y | z) = p(x|z) p(y|z)

a missing link in Bayesian networks normally indicates some
conditional independence among variables

conditional independence: useful for interpreting data and
simplifying computation

how to identify conditional independence in Bayesian
networks?
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Concepts Bayesian Networks Markov Random Fields

Confounding

confounding: a fork junction pattern x← z → y,
where z is called a confounder

p(x, y, z) = p(z) · p(x|z) · p(y|z)

unconditionally dependent: a confounder
introduces spurious association

x 6⊥ y ⇐⇒ p(x, y) 6= p(x) p(y)

conditionally independent:

x ⊥ y
∣∣ z ⇐⇒ p(x, y | z) = p(x|z) p(y|z)

the ice-cream example

◦ eating ice-cream =⇒ drowning in pool?
◦ confounding 6= causation
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Concepts Bayesian Networks Markov Random Fields

Chain

a chain junction pattern x→ z → y,
where z is called a mediator

p(x, y, z) = p(x) · p(z|x) · p(y|z)

unconditionally dependent: a mediator
introduces spurious association

x 6⊥ y ⇐⇒ p(x, y) 6= p(x) p(y)

conditionally independent:

x ⊥ y
∣∣ z ⇐⇒ p(x, y | z) = p(x|z) p(y|z)

the cooking example

◦ hungry =⇒ burning fingers?
◦ mediating 6= causation
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Concepts Bayesian Networks Markov Random Fields

Colliding

a colliding junction pattern x→ z ← y,
where z is called a collider

p(x, y, z) = p(x) · p(y) · p(z |x, y)

unconditionally independent:

x ⊥ y ⇐⇒ p(x, y) = p(x)p(y)

conditionally dependent:

x 6⊥ y
∣∣ z ⇐⇒ p(x, y | z) 6= p(x|z)p(y|z)

the explain-away phenomenon
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Concepts Bayesian Networks Markov Random Fields

Colliding Causes Explain-away

there exist two independent causes
for a common effect

observing one will explain away
another

the wet driveway example

◦ rain =⇒ wet driveway
◦ leaking pipe =⇒ wet driveway
◦ after observing the wet driveway

(W = 1), we have

Pr(R = 1 |W = 1) = 0.3048

Pr(R = 1 |W = 1, L = 1) = 0.1667

Pr(R = 1) = 0.1

Pr(L = 1) = 0.01

Pr(W = 1 |R = 1, L = 1) = 0.90

Pr(W = 1 |R = 1, L = 0) = 0.80

Pr(W = 1 |R = 0, L = 1) = 0.50

Pr(W = 1 |R = 0, L = 0) = 0.20
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Concepts Bayesian Networks Markov Random Fields

Conditional Independence: d-separation Rule

for any three disjoint subsets A, B and C,
A ⊥ B

∣∣ C ⇐⇒ any path between A
and B is blocked by C

a.k.a. A and B are d-separated by C

a path is blocked by C if both hold:

1 all confounders and mediators along the
path belong to C

2 neither any collider nor any of its
descendants belongs to C

e.g. we can verify:

a 6⊥ f
∣∣ c a 6⊥ b

∣∣ c
a 6⊥ c

∣∣ f a ⊥ b
∣∣ f e ⊥ b

∣∣ f
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Concepts Bayesian Networks Markov Random Fields

Bayesian Networks: Representing Generative Models (I)

Gaussian models:

p(xi) = N (xi |µ,Σ)

Bayesian learning of Gaussian models:

p(µ,x1, · · ·xN ) = p(µ)

N∏
i=1

p(xi|µ)
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Concepts Bayesian Networks Markov Random Fields

Bayesian Networks: Representing Generative Models (II)

Gaussian mixture models (GMMs):

◦ latent variable: the index is encoded as a
1-of-M vector zi =

[
zi1 zi2 · · · ziM

]
◦ p(zi) =

∏M
m=1

(
wm

)zim
◦ p(xi | zi) =

∏M
m=1

(
N (xi |µm,Σm)

)zim
joint distribution:

p(x1, · · · ,xN , z1, · · · , zN ) =
∏N

i=1 p(zi)p(xi|zi)

marginal distribution:

p(x1, · · · ,xN ) =
∏N

i=1

(∑
zi

p(zi)p(xi|zi)︸ ︷︷ ︸
p(xi)

)
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Concepts Bayesian Networks Markov Random Fields

Bayesian Networks: Representing Generative Models (III)

Bayesian learning of Gaussian mixture models (GMMs):

p(w) = Dir(w
∣∣α(0))

p(zi |w) =

M∏
m=1

(
wm

)zim ∀i = 1, 2, · · ·N

p
(
Σm

)
=W−1

(
Σm

∣∣Φ(0)
m , ν(0)m

)
∀m = 1, 2, · · ·M

p(µm

∣∣Σm) = N
(
µm

∣∣ν(0)
m ,

1

λ
(0)
m

Σm

)
∀m = 1, 2, · · ·M

p
(
xi

∣∣ zi, {µm,Σm}
)

=

M∏
m=1

(
N (xi

∣∣µm,Σm)
)zim

∀i = 1, 2, · · ·N

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 15



Concepts Bayesian Networks Markov Random Fields

Bayesian Networks: Representing Generative Models (IV)

Markov chain models

◦ 1st-order: p(xi|xi−1)
◦ 2nd-order: p(xi|xi−1, xi−2)

hidden Markov models (HMMs)

p(s1, · · · , sT ,x1, · · · ,xT )

= p(s1)p(x1|s1)
T∏
t=2

p(st|st−1)p(xt|st)

p(x1, · · · ,xT ) =
∑

s1,··· ,sT

p(s1, · · · , sT ,x1, · · · ,xT )
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Concepts Bayesian Networks Markov Random Fields

Learning of Bayesian Networks

structure learning: an unsolved open problem

parameter estimation

◦ a Bayesian network: pθ(x1, x2, x3, · · · )
◦ MLE using full data observations: simple{(

x
(1)
1 , x

(1)
2 , x

(1)
3 , · · ·

)
,
(
x

(2)
1 , x

(2)
2 , x

(2)
3 , · · ·

)
, · · ·

(
x

(i)
1 , x

(i)
2 , x

(i)
3 , · · ·

)
, · · ·

}
l(θ) =

∑
i

ln pθ(x
(i)
1 , x

(i)
2 , x

(i)
3 , · · · )

◦ MLE using partially observed data: requires EM method{(
x

(1)
1 , ∗, x(1)

3 , · · ·
)
,
(
x

(2)
1 , ∗, x(2)

3 , · · ·
)
, · · · ,

(
x

(i)
1 , ∗, x(i)

3 , · · ·
)
, · · ·

}
l(θ) =

∑
i

ln
∑
x2

pθ
(
x

(1)
1 , x2, x

(1)
3 , · · ·

)
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Concepts Bayesian Networks Markov Random Fields

Bayesian Networks: Inference Problem

inference problem: infer any conditional distribution using BNs

p
(
x1, x2, x3︸ ︷︷ ︸
observed x

, x4, x5, x6︸ ︷︷ ︸
interested y

, x7, x8, · · ·︸ ︷︷ ︸
missing z

)

p(y |x) =
p(x,y)

p(x)
=

∑
z p(x,y, z)∑
y,z p(x,y, z)

the key is how to compute any summation efficiently

efficiency depends on the network structure

◦ sparser networks =⇒ more efficient inference methods
◦ densely structured networks are generally hard to infer
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Concepts Bayesian Networks Markov Random Fields

Bayesian Networks: Inference Algorithms

inference applicable complexity

algorithm graphs

brute-force all O(KT )

Forward-Backward chain O(T ·K2)

exact Sum-Product tree O(T ·K2)

inference (Belief Propagation)

Max-Sum tree O(T ·K2)

Junction Tree all O(Kp)

Loopy Belief Propagation all -

approximate Variational Inference all -

inference Expectation Propagation all -

Monte Carlo Sampling all -

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 15



Concepts Bayesian Networks Markov Random Fields

Forward-Backward: Message-Passing on a Chain (I)

p(x1, x2, · · · , xT ) = p(x1)p(x2|x1) · · · p(xn|xn−1) · · · p(xT |xT−1)

consider any marginal distribution p(xn)

p(xn) =
∑
x1

· · ·
∑
xn−1

∑
xn+1

· · ·
∑
xT

p(x1)p(x2|x1)p(x3|x2) · · · p(xT |xT−1)

=

( ∑
x1···xn−1

p(x1) · · · p(xn|xn−1)

)( ∑
xn+1···xT

p(xn+1|xn) · · · p(xT |xT−1)

)
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Concepts Bayesian Networks Markov Random Fields

Forward-Backward: Message-Passing on a Chain (II)

p(xn) =

αn(xn)︷ ︸︸ ︷

( ∑
xn−1

p(xn|xn−1) · · ·

α3(x3)︷ ︸︸ ︷
(∑

x2

p(x3|x2)

α2(x2)︷ ︸︸ ︷(∑
x1

α1(x1)︷ ︸︸ ︷
p(x1) p(x2|x1)

)))
( ∑
xn+1

p(xn+1|xn) · · ·
( ∑
xT−1

p(xT−1|xT−2)
(∑
xT

p(xT |xT−1)
)

︸ ︷︷ ︸
βT−1(xT−1)

)

︸ ︷︷ ︸
βT−2(xT−2)

)

︸ ︷︷ ︸
βn(xn)
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Concepts Bayesian Networks Markov Random Fields

Forward-Backward: Message-Passing on a Chain (III)

summations are computed recursively =⇒ message passing

extended to any other marginal distributions:

◦ for any unobserved variable xt−1 or xt+1

αt(xt) =
∑
xt−1

p(xt|xt−1)αt−1(xt−1)

βt(xt) =
∑
xt+1

p(xt+1|xt)βt+1(xt+1)

◦ for an observed variable xt

αt+1(xt+1) = p(xt+1|xt)αt(xt)
∣∣∣
xt=ωk

βt−1(xt−1) = p(xt|xt−1)βt(xt)
∣∣∣
xt=ωk
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Concepts Bayesian Networks Markov Random Fields

Monte Carlo Sampling

Monte Carlo sampling for p(x6, x7 | x̂1, x̂3, x̂5)

D = ∅; n = 0
while n < N do

1. sampling x̂
(n)
2 ∼ p(x2)

2. sampling x̂
(n)
4 ∼ p(x4 | x̂1, x̂(n)2 , x̂3)

3. sampling x̂
(n)
6 ∼ p(x6 | x̂(n)4 )

4. sampling x̂
(n)
7 ∼ p(x7 | x̂(n)4 , x̂5)

5. D ⇐ D ∪ {(x̂(n)6 , x̂
(n)
7 )}

6. n = n+ 1
end while

p(x1), p(x2), p(x3)
p(x4|x1, x2, x3)
p(x5|x1, x3), p(x6|x4)

p(x7|x4, x5)
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Concepts Bayesian Networks Markov Random Fields

Case Study (I): Naive Bayes Classifier

naive Bayes assumption: all features are conditionally
independent given the class label

naive Bayes classifiers: the simplest BN structure

p(y, x1, x2, · · · , xd) = p(y)p(x1|y)p(x2|y) · · · p(xd|y)

= p(y)
d∏
i=1

p(xi|y)

train each p(xi|y) separately

inference is also simple

y∗ = argmax
y

p(y|x1, x2, · · · , xd) = argmax
y

p(y)

d∏
i=1

p(xi|y)
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Concepts Bayesian Networks Markov Random Fields

Case Study (II): Latent Dirichlet Allocation (1)

topic modeling for text documents

◦ a document mentions a few topics
◦ each topic is described by a unique

distribution of words

latent Dirichlet allocation (LDA):

◦ for each document, sample a topic
distribution (multinomial)

θi ∼ p(θ) = Dir(θ |α)

◦ for j-th location in i-th document

1. sample a topic zij :

zij ∼ p(z |θi) = Mult(z |θi)
2. sample a word from

wij ∼
∏K
k=1

(
Mult

(
wij |βk

))zijk

words labelled by the same color

come from the same topic
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Concepts Bayesian Networks Markov Random Fields

Case Study (II): Latent Dirichlet Allocation (2)

latent Dirichlet allocation (LDA):

◦ topic distributions as Θ =
{
θi
∣∣ 1 ≤ i ≤M}

◦ all words in all documents as
W =

{
wij

∣∣ 1 ≤ i ≤M ; 1 ≤ j ≤ Ni
}

◦ all sampled topics as
Z =

{
zij
∣∣ 1 ≤ i ≤M ; 1 ≤ j ≤ Ni

}
p(Θ,Z,W) =

M∏
i=1

p(θi)

Ni∏
j=1

p(zij |θi) p(wij | zij)

p(θi) = Dir(θi
∣∣α)

p(zij |θi) = Mult(zij
∣∣θi)

p(wij | zij) =
K∏
k=1

(
Mult

(
wij |βk

))zijk
LDA parameters:

◦ α ∈ RK

◦ β ∈ RK×V
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Concepts Bayesian Networks Markov Random Fields

Case Study (II): Latent Dirichlet Allocation (3)

training problem: maximize the likelihood function

p
(
W ; α,β

)
=

∫∫∫
θ1···θM

M∏
i=1

p(θi)

Ni∏
j=1

∑
zij

p(zij |θi) p(wij | zij) dθ1 · · · dθM

inference problem:

p
(
Θ,Z

∣∣W)
=
p
(
Θ,Z,W

)
p
(
W
) =

p
(
Θ,Z,W

)∫∫∫
Θ

∑
Z p
(
Θ,Z,W

)
dΘ

both are computationally intractable
approximation by a variational distribution

p
(
Θ,Z

∣∣W)
≈ q(Θ,Z) =

M∏
i=1

q(θi
∣∣γ) Ni∏

j=1

q(zij
∣∣φij)

learn α and β by maximizing a variational lower-bound of

p
(
W ; α,β

)
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Markov Random Fields: Maximum Cliques

Markov random fields: use undirected graphs

◦ a node =⇒ a random variable
◦ a undirected link 6= a conditional distribution

conditional independence ⇐⇒ topological
connection

◦ e.g. A ⊥ B
∣∣C

cliques: any set of fully-connected nodes

◦ {x1, x2}, {x1, x2, x3}, {x2, x4}, etc.

maximum cliques: not contained by another
clique

◦ {x1, x2, x3}, {x2, x4}, {x4, x5}, {x6, x7}
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Concepts Bayesian Networks Markov Random Fields

Markov Random Fields: Potential and Partition Functions

potential function ψ(·): any non-negative function defined over all
variable in a maximum clique

◦ use the exponential function: ψc(xc) = exp
(
− E(xc)

)
◦ E(xc) is called the energy function
◦ exponential potential functions =⇒ a Boltzmann distribution

joint distribution of an MRF: a product of the potential functions of
all maximum cliques, divided by a normalization term

p(x) =
1

Z

∏
c

ψc(xc)

Z is called the partition function: Z =
∑

x

∏
c ψc(xc)

MRFs are hard to learn due to the intractable partition function

all BN inference algorithms are equally applicable to MRFs
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Concepts Bayesian Networks Markov Random Fields

Case Study (III): Conditional Random Fields

conditional random fields (CRFs) define a
conditional distribution between two sets of
random variables

p(Y |X) =

∏
c ψC(Yc,X)∑

Y

∏
c ψC(Yc,X)

each potential function is defined on X and a
maximum clique of Y

linear-chain CRFs: all Y nodes form a chain

p(Y |X) =

∏T−1
t=1 ψ(yt,yt+1,X)∑

Y

∏T−1
t=1 ψ(yt,yt+1,X)

ψ(yt,yt+1,X) = exp

( K∑
k=1

wk · fk(yt,yt+1,X)

)
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Concepts Bayesian Networks Markov Random Fields

Case Study (IV): Restricted Boltzmann Machines (1)

restricted Boltzman machines (RBMs) define a
joint distribution of some bipartite random
variables

◦ visible variables: vi ∈ {0, 1} (1 ≤ i ≤ I)
◦ hidden variables: hj ∈ {0, 1} (1 ≤ j ≤ J)

maximum cliques: any {vi, hj} (∀i, j)

potential functions:

ψ(vi, hj) = exp
(
aivi + bjhj + wijvihj

)
the joint distribution:

p
(
v1, · · · , vI , h1, · · · , hJ

)
=

1

Z
exp

( I∑
i=1

aivi +
J∑
j=1

bjhj +
I∑
i=1

J∑
j=1

wijvihj

)
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Concepts Bayesian Networks Markov Random Fields

Case Study (IV): Restricted Boltzmann Machines (2)

a =

a1

...
aI

 b =

b1...
bJ

 v =

v1

...
vI

 h =

h1

...
hJ

 W =

[
wij

]
I×J

RBM in matrix form: p(v,h) = 1
Z exp

(
aᵀv + bᵀh + vᵀWh

)
conditional independence in RBMs:

p(h
∣∣v) = J∏

j=1

p(hj
∣∣v) p(v

∣∣h) = I∏
i=1

p(vi
∣∣h)

where Pr(hj = 1
∣∣v) and Pr(vi = 1

∣∣h) are sigmoids.

learning RBMs is not trivial due to the partition function; needs
sampling methods

arg max
a,b,W

∏
v∈D

p(v) = arg max
a,b,W

∏
v∈D

p(v,h)∑
h p(v,h)
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