Markov Random Fields

Chapter 15 Graphical Models

supplementary slides to Machine Learning Fundamentals [©]Hui Jiang 2020 published by Cambridge University Press

August 2020

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Chapter 15

3 Markov Random Fields

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Chapter 15

Graphical Models

- graphical models: a graphical representation for generative models
- a graphical model essentially represents a joint distribution of some random variables
 - a node for a random variable
 - o an arc for relationship between random variables
- two different types of graphical models:
 - directed graphical models, a.k.a. Bayesian networks, use directed arcs, representing conditional distributions
 - 2 undirected graphical models, a.k.a. Markov random fields, use undirected arcs

Markov Random Fields 00000

Bayesian Networks

- each directed arc represents a conditional distribution among nodes
- a Bayesian network (BN) represents a way to factorize a joint distribution of all underlying random variable

$$p(x_1, x_2, \cdots, x_N) = \prod_{i=1}^N p(x_i | \mathbf{pa}(x_i))$$

e.g. a joint distribution of 5 R.V.'s:

$$p(x_1, x_2, x_3, x_4, x_5) = p(x_1) \cdot p(x_2 | x_1) \cdot p(x_3 | x_1, x_2) \cdot p(x_4 | x_1, x_2, x_3) \cdot p(x_5 | x_1, x_2, x_3, x_4)$$

Bayesian Networks: A Sparse Example

- why use graphical representations for joint distributions?
- a sparse graph indicates some conditional independence among variables

$$p(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$$

$$= p(x_1) p(x_2) p(x_3) p(x_4|x_1, x_2, x_3) p(x_5|x_1, x_3) p(x_6|x_4) p(x_7|x_4, x_5)$$

 if each conditional distribution is chosen from e-family, a Bayesian network represents another distribution in e-family

Bayesian Networks for Discrete Random Variables

- all nodes represent discrete random variables
- an *M*-value random variable *x* is encoded as a 1-of-*M* vector $\mathbf{x} = \begin{bmatrix} x_1 \, x_2 \, \cdots \, x_M \end{bmatrix}^{\mathsf{T}}$
- conditional probabilities are stored as tables

$$\mu_{ij} \stackrel{\Delta}{=} \Pr(x = i \mid y = j) = \Pr(x_i = 1 \mid y_j = 1)$$

notations for conditional distributions

$$p(x \mid y) = p(\mathbf{x} \mid \mathbf{y}) = \prod_{i=1}^{M} \prod_{j=1}^{N} \mu_{ij}^{x_i y_j}$$
$$p(x \mid y, z) = p(\mathbf{x} \mid \mathbf{y}, \mathbf{z}) = \prod_{i=1}^{M} \prod_{j=1}^{N} \prod_{k=1}^{K} \mu_{ijk}^{x_i y_j z_k}$$

$$[1 \ 0 \ \cdots \ 0], [0 \ 1 \ \cdots \ 0], \cdots, [0 \ 0 \ \cdots \ 1]$$

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Chapter 15

 Markov Random Fields

A (1) > A (2) > A

Bayesian Networks: Outline

- 1 Conditional Independence
- 2 Represent Generative Models as Bayesian Networks
- 3 Learning Bayesian Networks
- 4 Inference Algorithms
- 5 Case Study (I): Naive Bayes Classifier
- 6 Case Study (II): Latent Dirichlet Allocation

Conditional Independence

two random variables are independent

$$x \perp y \iff p(x,y) = p(x)p(y)$$

• two random variables are *conditionally independent*

$$x \perp y \mid z \iff p(x, y \mid z) = p(x \mid z) p(y \mid z)$$

- a missing link in Bayesian networks normally indicates some conditional independence among variables
- conditional independence: useful for interpreting data and simplifying computation
- how to identify conditional independence in Bayesian networks?

Markov Random Fields

Confounding

• confounding: a fork junction pattern $x \leftarrow z \rightarrow y$, where z is called a *confounder*

 $p(x, y, z) = p(z) \cdot p(x|z) \cdot p(y|z)$

 unconditionally dependent: a confounder introduces spurious association

$$x \not\perp y \quad \Longleftrightarrow \quad p(x,y) \neq p(x) \, p(y)$$

conditionally independent:

$$x \perp y \mid z \iff p(x, y \mid z) = p(x \mid z) p(y \mid z)$$

- the ice-cream example
 - eating ice-cream \implies drowning in pool?
 - $\circ \ \ \text{confounding} \neq \text{causation}$

Markov Random Fields

Chain

• a *chain* junction pattern $x \to z \to y$, where z is called a *mediator*

 $p(x, y, z) = p(x) \cdot p(z|x) \cdot p(y|z)$

 unconditionally dependent: a mediator introduces spurious association

 $x \not\perp y \quad \Longleftrightarrow \quad p(x,y) \neq p(x) \, p(y)$

conditionally independent:

 $x \perp y \ \Big| \ z \quad \Longleftrightarrow \quad p(x,y \,|\, z) = p(x|z) \, p(y|z)$

- the cooking example
 - \circ hungry \implies burning fingers?
 - $\circ \ \ \text{mediating} \neq \text{causation}$

Markov Random Fields 00000

Colliding

• a *colliding* junction pattern $x \to z \leftarrow y$, where z is called a *collider*

$$p(x, y, z) = p(x) \cdot p(y) \cdot p(z \,|\, x, y)$$

unconditionally independent:

$$x \perp y \quad \Longleftrightarrow \quad p(x,y) = p(x)p(y)$$

- conditionally dependent:
 - $x \not\perp y \mid z \quad \Longleftrightarrow \quad p(x,y \mid z) \neq p(x \mid z) p(y \mid z)$
- the explain-away phenomenon

 $p(x) \qquad p(y) \\ x \qquad y \\ p(z|x,y) \\ z \\ z$

• • • • • • • • • • • •

Chapter 15

Colliding Causes Explain-away

- there exist two independent causes for a common effect
- observing one will explain away another
- the wet driveway example
 - $\circ \ \mathsf{rain} \implies \mathsf{wet} \ \mathsf{driveway}$
 - \circ leaking pipe \implies wet driveway
 - after observing the wet driveway (W = 1), we have

$$Pr(R = 1 | W = 1) = 0.3048$$
$$Pr(R = 1 | W = 1, L = 1) = 0.1667$$

$$Pr(R = 1) = 0.1$$

$$Pr(L = 1) = 0.01$$

$$Pr(W = 1 | R = 1, L = 1) = 0.90$$

$$Pr(W = 1 | R = 1, L = 0) = 0.80$$

$$Pr(W = 1 | R = 0, L = 1) = 0.50$$

$$Pr(W = 1 | R = 0, L = 0) = 0.20$$

Markov Random Fields

Conditional Independence: d-separation Rule

- for any three disjoint subsets A, B and C, $A \perp B \mid C \iff$ any path between Aand B is blocked by C
- \blacksquare a.k.a. A and B are d-separated by C
- a path is blocked by C if both hold:
 - 1 all confounders and mediators along the path belong to ${\cal C}$
 - 2 neither any collider nor any of its descendants belongs to C
- e.g. we can verify:

$$\begin{array}{ccc} a \not\perp f \mid c & a \not\perp b \mid c \\ a \not\perp c \mid f & a \perp b \mid f & e \perp b \mid \end{array}$$

Bayesian Networks: Representing Generative Models (I)

Bayesian learning of Gaussian models
$$p(\boldsymbol{\mu}, \mathbf{x}_1, \cdots \mathbf{x}_N) = p(\boldsymbol{\mu}) \prod_{i=1}^N p(\mathbf{x}_i | \boldsymbol{\mu})$$

Concepts 0000

Bayesian Networks: Representing Generative Models (II)

Gaussian mixture models (GMMs):

 $\begin{array}{l} \circ \quad \text{latent variable: the index is encoded as a} \\ 1 \text{-of-M vector } \mathbf{z}_i = \begin{bmatrix} z_{i1} \ z_{i2} \ \cdots \ z_{iM} \end{bmatrix} \\ \circ \quad p(\mathbf{z}_i) = \prod_{m=1}^M \ \left(w_m \right)^{z_{im}} \\ \circ \quad p(\mathbf{x}_i \mid \mathbf{z}_i) = \prod_{m=1}^M \left(\mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m) \right)^{z_{im}} \end{array}$

joint distribution:

$$p(\mathbf{x}_1, \cdots, \mathbf{x}_N, \mathbf{z}_1, \cdots, \mathbf{z}_N) = \prod_{i=1}^N p(\mathbf{z}_i) p(\mathbf{x}_i | \mathbf{z}_i)$$

marginal distribution:

$$p(\mathbf{x}_1, \cdots, \mathbf{x}_N) = \prod_{i=1}^N \left(\underbrace{\sum_{\mathbf{z}_i} p(\mathbf{z}_i) p(\mathbf{x}_i | \mathbf{z}_i)}_{p(\mathbf{x}_i)} \right)$$
carry slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

p

Bayesian Networks: Representing Generative Models (III)

Bayesian learning of Gaussian mixture models (GMMs):

$$p(\mathbf{w}) = \mathsf{Dir}(\mathbf{w} \mid \boldsymbol{\alpha}^{(0)})$$

$$p(\mathbf{z}_i \mid \mathbf{w}) = \prod_{m=1}^M (w_m)^{z_{im}} \quad \forall i = 1, 2, \cdots N$$

$$p(\Sigma_m) = \mathcal{W}^{-1}(\Sigma_m \mid \Phi_m^{(0)}, \nu_m^{(0)}) \quad \forall m = 1, 2, \cdots M$$

$$p(\boldsymbol{\mu}_m \mid \Sigma_m) = \mathcal{N}(\boldsymbol{\mu}_m \mid \boldsymbol{\nu}_m^{(0)}, \frac{1}{\lambda_m^{(0)}} \Sigma_m) \quad \forall m = 1, 2, \cdots M$$

$$p(\mathbf{x}_i \mid \mathbf{z}_i, \{\boldsymbol{\mu}_m, \Sigma_m\}) = \prod_{m=1}^M \left(\mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_m, \Sigma_m)\right)^{z_{im}} \quad \forall i = 1, 2, \cdots N$$

Markov Random Fields

 S_T

 \mathbf{X}_T

Bayesian Networks: Representing Generative Models (IV)

Markov chain models

1st-order:
$$p(x_i|x_{i-1})$$
2nd-order: $p(x_i|x_{i-1}, x_{i-2})$
hidden Markov models (HMMs)
 $p(s_1, \dots, s_T, \mathbf{x}_1, \dots, \mathbf{x}_T)$
 $= p(s_1)p(\mathbf{x}_1|s_1)\prod_{t=2}^T p(s_t|s_{t-1})p(\mathbf{x}_t|s_t)$
 $p(\mathbf{x}_1, \dots, \mathbf{x}_T) = \sum_{s_1, \dots, s_T} p(s_1, \dots, s_T, \mathbf{x}_1, \dots, \mathbf{x}_T)$

Learning of Bayesian Networks

- structure learning: an unsolved open problem
- parameter estimation
 - a Bayesian network: $p_{\theta}(x_1, x_2, x_3, \cdots)$
 - MLE using full data observations: simple

$$\left\{ \left(x_1^{(1)}, x_2^{(1)}, x_3^{(1)}, \cdots\right), \left(x_1^{(2)}, x_2^{(2)}, x_3^{(2)}, \cdots\right), \cdots \left(x_1^{(i)}, x_2^{(i)}, x_3^{(i)}, \cdots\right), \cdots \right\}$$
$$l(\boldsymbol{\theta}) = \sum_i \ln p_{\boldsymbol{\theta}}(x_1^{(i)}, x_2^{(i)}, x_3^{(i)}, \cdots)$$

• MLE using partially observed data: requires EM method

$$\left\{ \left(x_1^{(1)}, *, x_3^{(1)}, \cdots\right), \left(x_1^{(2)}, *, x_3^{(2)}, \cdots\right), \cdots, \left(x_1^{(i)}, *, x_3^{(i)}, \cdots\right), \cdots \right\}$$
$$l(\boldsymbol{\theta}) = \sum_i \ln \sum_{\boldsymbol{x}_2} p_{\boldsymbol{\theta}} \left(x_1^{(1)}, x_2, x_3^{(1)}, \cdots\right)$$

Bayesian Networks: Inference Problem

inference problem: infer any conditional distribution using BNs

$$p(\underbrace{x_1, x_2, x_3}, \underbrace{x_4, x_5, x_6}, \underbrace{x_7, x_8, \cdots})$$

observed ${\bf x}$ interested ${\bf y}$ missing ${\bf z}$

$$p(\mathbf{y} \mid \mathbf{x}) = \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{x})} = \frac{\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\sum_{\mathbf{y}, \mathbf{z}} p(\mathbf{x}, \mathbf{y}, \mathbf{z})}$$

the key is how to compute any summation efficientlyefficiency depends on the network structure

- $\circ\,$ sparser networks $\implies\,$ more efficient inference methods
- o densely structured networks are generally hard to infer

Markov Random Fields

Bayesian Networks: Inference Algorithms

	inference	applicable	complexity
	algorithm	graphs	
	brute-force	all	$O(K^T)$
	Forward-Backward	chain	$O(T \cdot K^2)$
exact	Sum-Product	tree	$O(T \cdot K^2)$
inference	(Belief Propagation)		
	Max-Sum	tree	$O(T \cdot K^2)$
	Junction Tree	all	$O(K^p)$
	Loopy Belief Propagation	all	-
approximate	Variational Inference	all	-
inference	Expectation Propagation	all	-
	Monte Carlo Sampling	all	-

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Chapter 15

Markov Random Fields

Forward-Backward: Message-Passing on a Chain (I)

$$\bigcup_{x_1} \xrightarrow{x_2} \cdots \xrightarrow{x_{n-1}} \xrightarrow{x_n} \xrightarrow{x_{n+1}} \cdots \xrightarrow{x_{T-1}} \xrightarrow{x_T}$$

 $p(x_1, x_2, \cdots, x_T) = p(x_1)p(x_2|x_1)\cdots p(x_n|x_{n-1})\cdots p(x_T|x_{T-1})$ consider any marginal distribution $p(x_n)$

$$p(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_T} p(x_1) p(x_2 | x_1) p(x_3 | x_2) \cdots p(x_T | x_{T-1})$$

= $\left(\sum_{x_1 \cdots x_{n-1}} p(x_1) \cdots p(x_n | x_{n-1})\right) \left(\sum_{x_{n+1} \cdots x_T} p(x_{n+1} | x_n) \cdots p(x_T | x_{T-1})\right)$

Forward-Backward: Message-Passing on a Chain (II)

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Chapter 15

Markov Random Fields 00000

Forward-Backward: Message-Passing on a Chain (III)

summations are computed recursively \implies message passing

extended to any other marginal distributions:

- for any unobserved variable x_{t-1} or x_{t+1} $\alpha_t(x_t) = \sum_{x_{t-1}} p(x_t|x_{t-1}) \alpha_{t-1}(x_{t-1})$ $\beta_t(x_t) = \sum_{x_{t+1}} p(x_{t+1}|x_t) \beta_{t+1}(x_{t+1})$
- \circ for an observed variable x_t

$$\alpha_{t+1}(x_{t+1}) = p(x_{t+1}|x_t)\alpha_t(x_t)\Big|_{x_t=\omega_k}$$

$$\beta_{t-1}(x_{t-1}) = p(x_t|x_{t-1})\beta_t(x_t)\Big|_{x_t=\omega_k}$$

Chapter 15

Markov Random Fields

Monte Carlo Sampling

Monte Carlo sampling for $p(x_6, x_7 | \hat{x}_1, \hat{x}_3, \hat{x}_5)$

$$\begin{split} \mathcal{D} &= \emptyset; \ n = 0 \\ \text{while} \ n < N \ \text{do} \\ 1. \ \text{sampling} \ \hat{x}_2^{(n)} \sim p(x_2) \\ 2. \ \text{sampling} \ \hat{x}_4^{(n)} \sim p(x_4 \,|\, \hat{x}_1, \hat{x}_2^{(n)}, \hat{x}_3) \\ 3. \ \text{sampling} \ \hat{x}_6^{(n)} \sim p(x_6 \,|\, \hat{x}_4^{(n)}) \\ 4. \ \text{sampling} \ \hat{x}_7^{(n)} \sim p(x_7 \,|\, \hat{x}_4^{(n)}, \hat{x}_5) \\ 5. \ \mathcal{D} &\leftarrow \mathcal{D} \cup \{(\hat{x}_6^{(n)}, \hat{x}_7^{(n)})\} \\ 6. \ n = n + 1 \\ \text{end while} \end{split}$$

 $\begin{array}{l} p(x_1), \, p(x_2), \, p(x_3) \\ p(x_4 | x_1, x_2, x_3) \\ p(x_5 | x_1, x_3), \, p(x_6 | x_4) \\ p(x_7 | x_4, x_5) \end{array}$

Case Study (I): Naive Bayes Classifier

- naive Bayes assumption: all features are conditionally independent given the class label
- naive Bayes classifiers: the simplest BN structure

$$p(y, x_1, x_2, \cdots, x_d) = p(y)p(x_1|y)p(x_2|y)\cdots p(x_d|y)$$
$$= p(y)\prod_{i=1}^d p(x_i|y)$$

- train each $p(x_i|y)$ separately
- inference is also simple

$$y^* = \arg \max_{y} p(y|x_1, x_2, \cdots, x_d) = \arg \max_{y} p(y) \prod_{i=1}^d p(x_i|y)$$

Markov Random Fields

Case Study (II): Latent Dirichlet Allocation (1)

- topic modeling for text documents
 - a document mentions a few topics
 - each topic is described by a unique distribution of words
- Iatent Dirichlet allocation (LDA):
 - for each document, sample a topic distribution (multinomial)

$$\boldsymbol{\theta}_i \sim p(\boldsymbol{\theta}) = \mathsf{Dir}(\boldsymbol{\theta} \,|\, \boldsymbol{\alpha})$$

- \circ for *j*-th location in *i*-th document
 - 1. sample a topic \mathbf{z}_{ij} :

$$\mathbf{z}_{ij} \sim p(\mathbf{z} \,|\, \boldsymbol{\theta}_i) = \mathsf{Mult}(\mathbf{z} \,|\, \boldsymbol{\theta}_i)$$

2. sample a word from

$$\mathbf{w}_{ij} \sim \prod_{k=1}^{K} \left(\mathsf{Mult}ig(\mathbf{w}_{ij} \,|\, oldsymbol{eta}_kig)
ight)^{z_{ij}}$$

The William Randolph Heart Foundation will give \$123 million to Lincoln Centre, Meteopolitum Opera Co., New York Finikiamenica and Jadiliand School. "Our board felt that we had a real opportunity to make a mark on the future of the preforming arts with these grants and every his a importunit soor indicidual areas of support in health model areasench, education and the social services," Heart Foundation President Randolph A. Hearts stald Modely in anothering the grants. Lackols Centre's base with 18 523000 for its new hadding, which amounting the grants. Lackols Centre's base with 18 Satisfue the start of the size of the amounting the grants. Lackols Centre's base with 18 Satisfue the start of the size of the the preforming and as a tunglish will get Satisfue theorem the lackon the start of the Lincols Center Consolidated Corporate Fund, will make its usual annual \$100,000 domines, no.

words labelled by the same color come from the same topic

Markov Random Fields

Case Study (II): Latent Dirichlet Allocation (2)

latent Dirichlet allocation (LDA):

- topic distributions as $\boldsymbol{\Theta} = \left\{ \boldsymbol{\theta}_i \ \big| \ 1 \leq i \leq M \right\}$
- all words in all documents as $\mathbf{W} = \left\{ \mathbf{w}_{ij} \mid 1 \le i \le M; 1 \le j \le N_i \right\}$
- o all sampled topics as

$$\mathbf{Z} = \left\{ \mathbf{z}_{ij} \mid 1 \le i \le M; 1 \le j \le N_i \right\}$$

$$p(\boldsymbol{\Theta}, \mathbf{Z}, \mathbf{W}) = \prod_{i=1}^{M} p(\boldsymbol{\theta}_i) \prod_{j=1}^{N_i} p(\mathbf{z}_{ij} \mid \boldsymbol{\theta}_i) p(\mathbf{w}_{ij} \mid \mathbf{z}_{ij})$$
$$p(\boldsymbol{\theta}_i) = \mathsf{Dir}(\boldsymbol{\theta}_i \mid \boldsymbol{\alpha})$$
$$p(\mathbf{z}_{ij} \mid \boldsymbol{\theta}_i) = \mathsf{Mult}(\mathbf{z}_{ij} \mid \boldsymbol{\theta}_i)$$

$$p(\mathbf{w}_{ij} \,|\, \mathbf{z}_{ij}) = \prod_{k=1}^{K} \left(\mathsf{Mult}(\mathbf{w}_{ij} \,|\, \boldsymbol{\beta}_k) \right)^{z_{ijk}}$$

LDA parameters:

$$\circ \ \boldsymbol{\alpha} \in \mathbb{R}^{K}$$
$$\circ \ \boldsymbol{\beta} \in \mathbb{R}^{K \times V}$$

Concepts 0000 Bayesian Networks

Markov Random Fields

Case Study (II): Latent Dirichlet Allocation (3)

training problem: maximize the likelihood function

$$p(\mathbf{W}; \boldsymbol{\alpha}, \boldsymbol{\beta}) = \iiint_{\boldsymbol{\theta}_1 \cdots \boldsymbol{\theta}_M} \prod_{i=1}^M p(\boldsymbol{\theta}_i) \prod_{j=1}^{N_i} \sum_{\mathbf{z}_{ij}} p(\mathbf{z}_{ij} \mid \boldsymbol{\theta}_i) p(\mathbf{w}_{ij} \mid \mathbf{z}_{ij}) d\boldsymbol{\theta}_1 \cdots d\boldsymbol{\theta}_M$$

inference problem:

$$p(\boldsymbol{\Theta}, \mathbf{Z} \mid \mathbf{W}) = \frac{p(\boldsymbol{\Theta}, \mathbf{Z}, \mathbf{W})}{p(\mathbf{W})} = \frac{p(\boldsymbol{\Theta}, \mathbf{Z}, \mathbf{W})}{\iint_{\boldsymbol{\Theta}} \sum_{\mathbf{Z}} p(\boldsymbol{\Theta}, \mathbf{Z}, \mathbf{W}) d\boldsymbol{\Theta}}$$

both are computationally intractable

approximation by a variational distribution

$$p(\boldsymbol{\Theta}, \mathbf{Z} \mid \mathbf{W}) \approx q(\boldsymbol{\Theta}, \mathbf{Z}) = \prod_{i=1}^{M} q(\boldsymbol{\theta}_{i} \mid \boldsymbol{\gamma}) \prod_{j=1}^{N_{i}} q(\mathbf{z}_{ij} \mid \boldsymbol{\phi}_{ij})$$

learn α and β by maximizing a variational lower-bound of $p(\mathbf{W}; \alpha, \beta)$

Markov Random Fields •0000

Markov Random Fields: Maximum Cliques

Markov random fields: use undirected graphs

- \circ a node \implies a random variable
- $\circ\,$ a undirected link \neq a conditional distribution

• e.g. $A \perp B \mid C$

cliques: any set of fully-connected nodes

 $\circ \{x_1, x_2\}$, $\{x_1, x_2, x_3\}$, $\{x_2, x_4\}$, etc.

 maximum cliques: not contained by another clique

 $\circ \ \{x_1, x_2, x_3\}, \ \{x_2, x_4\}, \ \{x_4, x_5\}, \ \{x_6, x_7\}$

Markov Random Fields: Potential and Partition Functions

- \blacksquare potential function $\psi(\cdot):$ any non-negative function defined over all variable in a maximum clique
 - $\circ~$ use the exponential function: $\psi_c(\mathbf{x}_c) = \exp \big(E(\mathbf{x}_c) \big)$
 - $\circ~E(\mathbf{x}_c)$ is called the energy function
 - $\circ~$ exponential potential functions \implies a Boltzmann distribution
- joint distribution of an MRF: a product of the potential functions of all maximum cliques, divided by a normalization term

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c} \psi_c(\mathbf{x}_c)$$

- Z is called the partition function: $Z = \sum_{\mathbf{x}} \prod_{c} \psi_{c}(\mathbf{x}_{c})$
- MRFs are hard to learn due to the intractable partition function
- all BN inference algorithms are equally applicable to MRFs

Concepts 0000

1

Bayesian Networks

Markov Random Fields 00●00

Case Study (III): Conditional Random Fields

 conditional random fields (CRFs) define a conditional distribution between two sets of random variables

$$p(\mathbf{Y} \mid \mathbf{X}) = \frac{\prod_{c} \psi_{C}(\mathbf{Y}_{c}, \mathbf{X})}{\sum_{\mathbf{Y}} \prod_{c} \psi_{C}(\mathbf{Y}_{c}, \mathbf{X})}$$

- \blacksquare each potential function is defined on ${\bf X}$ and a maximum clique of ${\bf Y}$
- linear-chain CRFs: all Y nodes form a chain

$$p(\mathbf{Y} | \mathbf{X}) = \frac{\prod_{t=1}^{T-1} \psi(\mathbf{y}_t, \mathbf{y}_{t+1}, \mathbf{X})}{\sum_{\mathbf{Y}} \prod_{t=1}^{T-1} \psi(\mathbf{y}_t, \mathbf{y}_{t+1}, \mathbf{X})}$$
$$\psi(\mathbf{y}_t, \mathbf{y}_{t+1}, \mathbf{X}) = \exp\left(\sum_{k=1}^{K} w_k \cdot f_k(\mathbf{y}_t, \mathbf{y}_{t+1}, \mathbf{X})\right)$$

Markov Random Fields

Case Study (IV): Restricted Boltzmann Machines (1)

- restricted Boltzman machines (RBMs) define a joint distribution of some bipartite random variables
 - visible variables: $v_i \in \{0, 1\} (1 \le i \le I)$
 - hidden variables: $h_j \in \{0,1\} \ (1 \le j \le J)$
- maximum cliques: any $\{v_i, h_j\}$ $(\forall i, j)$
- potential functions:

$$\psi(v_i, h_j) = \exp\left(a_i v_i + b_j h_j + w_{ij} v_i h_j\right)$$

the joint distribution:

$$p(v_1, \cdots, v_I, h_1, \cdots, h_J) = \frac{1}{Z} \exp\left(\sum_{i=1}^{I} a_i v_i + \sum_{j=1}^{J} b_j h_j + \sum_{i=1}^{I} \sum_{j=1}^{J} w_{ij} v_i h_j\right)$$

Markov Random Fields

Case Study (IV): Restricted Boltzmann Machines (2)

$$\mathbf{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_I \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_J \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_I \end{bmatrix} \quad \mathbf{h} = \begin{bmatrix} h_1 \\ \vdots \\ h_J \end{bmatrix} \quad \mathbf{W} = \begin{bmatrix} w_{ij} \end{bmatrix}_{I \times J}$$

RBM in matrix form: $p(\mathbf{v}, \mathbf{h}) = \frac{1}{Z} \exp\left(\mathbf{a}^{\mathsf{T}}\mathbf{v} + \mathbf{b}^{\mathsf{T}}\mathbf{h} + \mathbf{v}^{\mathsf{T}}\mathbf{W}\mathbf{h}\right)$ conditional independence in RBMs:

$$p(\mathbf{h} \mid \mathbf{v}) = \prod_{j=1}^{J} p(h_j \mid \mathbf{v}) \qquad p(\mathbf{v} \mid \mathbf{h}) = \prod_{i=1}^{I} p(v_i \mid \mathbf{h})$$

where $\Pr(h_j = 1 \mid \mathbf{v})$ and $\Pr(v_i = 1 \mid \mathbf{h})$ are sigmoids.

 learning RBMs is not trivial due to the partition function; needs sampling methods

$$\arg \max_{\mathbf{a}, \mathbf{b}, \mathbf{W}} \prod_{\mathbf{v} \in \mathcal{D}} p(\mathbf{v}) = \arg \max_{\mathbf{a}, \mathbf{b}, \mathbf{W}} \prod_{\mathbf{v} \in \mathcal{D}} \frac{p(\mathbf{v}, \mathbf{h})}{\sum_{\mathbf{h}} p(\mathbf{v}, \mathbf{h})}$$