Chapter 1 Introduction

supplementary slides to Machine Learning Fundamentals [©]Hui Jiang 2020 published by Cambridge University Press

August 2020

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Chapter 1

Machine Learning	Basic Concepts	General Principles	Advanced Topics
O	0000000000	0000000	O

Outline

- 2 Basic Concepts in Machine Learning
- 3 General Principles in Machine Learning
- 4 Advanced Topics in Machine Learning

Machine Learning

artificial intelligence (AI):

- history of AI
- broad definition of AI: mimic human intelligence
- narrow definition of AI: rule-based symbolic approaches
- machine learning (ML): data-driven statistical methods
- ALVS MI
 - AI: manual construction of knowledge bases
 - ML: automatic learning from training data
- **paradigm shift:** knowledge-based \rightarrow data-driven
- machine learning pipeline:

Chapter 1

General Principles

Basic Concepts in Machine Learning

- classification vs. regression
- supervised vs. unsupervised learning
- simple vs. complex models
- parametric vs. non-parametric models
- over-fitting vs. under-fitting
 - bias-variance tradeoff

Machine Learning: classification vs. regression

Figure: A system view of any machine learning problem

- classification problems: outputs are discrete and finite
- regression problems: outputs are continuous
- structured prediction: outputs are structured objects

Machine Learning: supervised vs. unsupervised learning

Figure: A system view of any machine learning problem

- supervised learning
- unsupervised learning
- semi-supervised learning
- weakly-supervised learning
 self-supervised learning

Simple vs. Complex Models

- crucial to choose a right model in machine learning
- simple vs. complex models
- model complexity depends on the function form and the number of free parameters.
- simple models: linear models
 - o less training data; less computing resources
 - o mediocre performance in practice
- complex models: nonlinear models (e.g. *neural networks*, *decision trees*)
 - superior performance when sufficient training data are available
 - o more training data require more computing resources
 - difficult to analyze and interpret

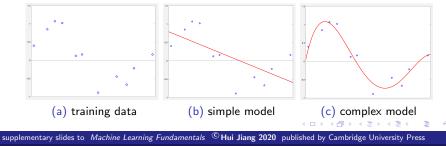
Machine Learning	Basic Concepts	General Principles	Advanced Topics
	000000000		

Simple vs. Complex Models

Example: curve fitting

- a regression problem: $x \mapsto y$
- a simple model: a linear model $y = a_0 + a_1 x$
- o a complex model: a 4th-order polynomial

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$



Chapter 1

Parametric vs. Non-parametric Models

- parametric models: a.k.a. finite-dimensional models
 - the function form is given
 - the model is fully determined by a *fixed number of parameters*
- non-parametric models: *a.k.a.* distribution-free models
 - o the function form is not specified
 - o the model complexity depends on the available data

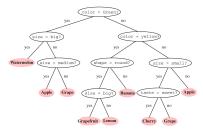


Figure: Decision trees: a non-parametric model

General Principles

Over-fitting vs. Under-fitting

data = signal + noise

- simple models \implies under-fitting
 - o too weak to capture the regularities in data
 - increase model complexity
- complex models \implies over-fitting
 - perfectly fit random noises
 - $\circ\;$ totally useless to fit noises as they vastly change each time
 - o decrease model complexity; add more data; regularization

Basic Concepts 000000000000

Advanced Topics

Over-fitting vs. Under-fitting

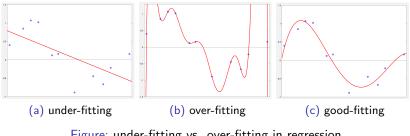


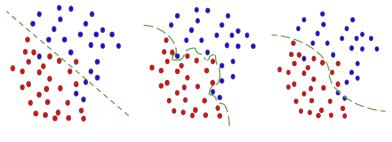
Figure: under-fitting vs. over-fitting in regression

Basic Concepts

General Principles

Advanced Topics 0

Over-fitting vs. Under-fitting



under-fitting

over-fitting

good-fitting

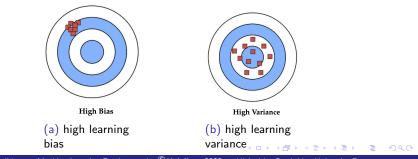
Figure: under-fitting vs. over-fitting in classification

Machine Learning	Basic Concepts	General Principles	Advanced Topics
O	0000000000	0000000	0

Bias-Variance Tradeoff

- simple models \implies under-fitting \implies high biases
- complex models ⇒ over-fitting ⇒ high variances
- bias and variance decomposition:

average learning error = $bias^2 + variance$



Bias-Variance Tradeoff

- cannot simultaneously reduce both bias and variance when learning from a fixed amount of data
- tradeoff between bias and variance for the lowest total error

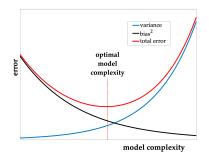


Figure: bias-variance tradeoff as a function of model complexity

General Principles in Machine Learning

- Occam's Razor
- No Free Lunch Theorem
- Law of the Smooth World
- Curse of Dimensionality
- Blessing of Non-uniformity

Occam's Razor

- a general principle in philosophy
 - the simplest solution is most likely the right one
- a preference for simplicity in model selection
- it suggests the minimum description length (MDL) principle
 - o an important learning criterion in machine learning
 - the best model to describe the regularities in data is the one that can compress the data most.

< (1) > < 3

No Free Lunch Theorem

- no learning method is universally superior to other methods for all possible learning problems
- no machine learning algorithm can learn anything useful merely from the training data
- a successful machine learning algorithm must have explicitly or implicitly used some knowledge beyond the training data

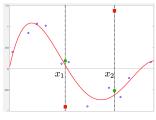


Figure: An illustration of No Free Lunch Theorem

Law of the Smooth World

- physical processes are smooth due to energy/power constraints
- real-world data are smooth, e.g. audio/speech/images/video
- the smoothness of the ground-truth is mathematically quantified by *Lipschitz continuity* or *bandlimitedness*

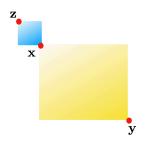


Figure: How the law of the smooth world helps in machine learning

supplementary slides to $\,$ *Machine Learning Fundamentals* $\,$ $^{igodold{C}}$ Hui Jiang 2020 $\,$ published by Cambridge University Press

k-nearest neighbors (k-NN)

- the law of the smooth world suggests the k-nearest neighbors (k-NN) method:
 - $\circ\,$ an unknown object is classified based on its k nearest neighbors in the training set
- k-NN is simple and intuitive
- how to measure distance? e.g. metric learning
- whether training data are enough to cover the whole space?

(a) training data (b) k-NN (k = 1) (c) k-NN (k = 5)

Chapter 1

Curse of Dimensionality

- curse of dimensionality: the dilemma of learning in high-dimensional spaces
 - as the dimensionality grows, it requires the exponentially increasing amount of training data and computing resources to ensure the effectiveness of learning
- e.g. the k-NN method requires N training samples to ensure classification error ϵ ($0 < \epsilon < 1$) in a d-dimensional space:

$$N \propto \left(\frac{\sqrt{d}}{\epsilon}\right)^{d+1}$$

Assume $\epsilon=0.01,$ if it requires N=100 when d=3. When d=10, it needs $N=2\times10^8,$ and it requires $N=7\times10^{123}$ when d=100.

Blessing of Non-uniformity

- the worst-case scenarios predicted by the curse of dimensionality normally occur when the data are uniformly distributed in high-dimensional spaces
- blessing of non-uniformility: real-world data never spreads evenly throughout the high-dimensional spaces but rather congregates on
 - linear subspaces
 - lower-dimensional nonlinear subspaces, called manifolds.
- it makes machine learning in high-dimensional spaces feasible
- it suggests dimensionality reduction:
 - linear dimensionality reduction
 - manifold learning

Advanced Topics in Machine Learning

- reinforcement learning
- meta-learning (a.k.a. learning to learn)
- causal inference
- transfer learning (a.k.a. domain adaptation)
- online learning
- active learning
- imitation learning