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Vectors and Matrices

a vector: a list of numbers arranged in order
◦ an abstract way to represent objects in math
◦ vectors are written in a column, e.g. x ∈ Rn and y ∈ Rm

x =


x1

x2

...
xn

 y =


y1

y2

...
ym


a matrix: a group of numbers arranged in a 2-d array, e.g.
A ∈ Rm×n

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn
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Matrix Multiplication (I)

a matrix: representing a particular way to move any point in
one space to another

matrix multiplication: the way to implement the above motion

y = Ax (A ∈ Rm×n) represents a mapping from a point x in Rn
to another point y in Rm
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Linear Transformation as Matrix Multiplication

matrix multiplication: can only
represent a linear transformation

a mapping from Rn to Rm is linear
if and only if :

◦ the origin in Rn is mapped to the
origin in Rm

◦ every straight line in Rn is
always mapped to a straight line
(or a single point) in Rm

nonlinear transformations: require
other methods rather than matrix
multiplication
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Matrix Multiplication (II)

matrix multiplication between two
matrices A ∈ Rm×r and B ∈ Rr×n

C = AB (with C ∈ Rm×n)

C represents a composition of two linear
transformations: A and B
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Matrix Operations (I)

matrix transpose: A ∈ Rm×n → Aᵀ ∈ Rn×m
◦ a square matrix A is symmetric iff A = Aᵀ

◦
(
Aᵀ
)ᵀ

= A
(
AB

)ᵀ
= BᵀAᵀ

(
A±B

)ᵀ
= Aᵀ ±Bᵀ

determinant: |A| ∈ R for a square matrix A ∈ Rn×n

inverse matrix A−1: for an n× n square matrix A iif
A−1A = AA−1 = I

inner-product: w · x (∈ R) of two vectors w,x ∈ Rn

◦ w · x ∆
=
∑n
i=1 wixi = wᵀx = xᵀw

◦ norm (L2 norm) of vector w: ‖w‖2 = w ·w
trace of an n× n square matrix: tr(A) =

∑n
i=1 aii
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Matrix Operations (II)

eigenvalues and eigenvectors of an n× n square matrix A:
A u = λu with λ ∈ R and non-zero u ∈ Rn
A symmetric matrix is positive definite (or semi-definite) if
all eigenvalues are positive (or non-negative).
If a square matrix A ∈ Rn×n has n orthogonal eigenvectors ui
(i = 1, 2, · · · , n): A ui = λi ui (normalized as ‖ui‖ = 1),
then A can be factorized as A = U Λ Uᵀ.

A =


∣∣ ∣∣ ∣∣

u1 u2 · · · un∣∣ ∣∣ ∣∣


︸ ︷︷ ︸
U


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


︸ ︷︷ ︸

Λ


∣∣ ∣∣ ∣∣

u1 u2 · · · un∣∣ ∣∣ ∣∣
ᵀ

︸ ︷︷ ︸
Uᵀ
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Matrix Calculus

If y is a function involving all elements of a vector x (or a matrix
A), ∂y

∂x (or ∂y
∂A) is a vector (or a matrix) of the same size.

x =


x1

x2
...
xn

 and A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



∂y

∂x

∆
=


∂y
∂x1
∂y
∂x2

...
∂y
∂xn

 and
∂y

∂A

∆
=


∂y
∂a11

∂y
∂a12

· · · ∂y
∂a1n

∂y
∂a21

∂y
∂a22

· · · ∂y
∂a2n

...
...

. . .
...

∂y
∂am1

∂y
∂am2

· · · ∂y
∂amn
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Matrix Calculus Formula for Machine Learning (I)

∂

∂x

(
xᵀx

)
= 2x

∂

∂x

(
xᵀy

)
= y

∂

∂x

(
xᵀAx

)
= Ax + Aᵀx

∂

∂x

(
xᵀAx

)
= 2Ax (symmetric A)

∂

∂A

(
xᵀAy

)
= xyᵀ
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Matrix calculus formula for machine learning (II)

∂

∂A

(
xᵀA−1y

)
= −(Aᵀ)−1xyᵀ(Aᵀ)−1 (square A)

∂

∂A

(
ln |A|

)
= (A−1)ᵀ = (Aᵀ)−1 (square A)

∂

∂A

(
tr
(
A
))

= I (square A)
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Random Variables

probability Pr(A): a real number between 0 and 1, indicating
how likely a random event A is to occur

random variables: taking different values in different
probabilities, e.g. X,Y, Z, · · ·
◦ discrete random variables (RVs)
◦ continuous random variables (RVs)

a random variable is fully specified by two ingredients:

◦ its domain: the set of all possible values
◦ its probability distribution: how likely it takes each value

a probability function is used to characterize how likely a
random variable may take each value in the domain
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Probability Functions

probability mass functions (p.m.f)
for discrete random variables

◦ p(x)
∆
= Pr(X = x) in the domain

∀x ∈ {x1, x2, · · · }
◦ sum-to-one constraint:∑

x p(x) = 1

probability density functions (p.d.f)
for continuous random variables

◦ define p(x) to ensure

Pr(a ≤ X ≤ b) =
∫ b
a
p(x) dx

◦ sum-to-one constraint:∫ +∞
−∞ p(x) dx = 1

x x1 x2 x3 x4

p(x) 0.4 0.3 0.2 0.1

Table: an example of p.m.f

Figure: a p.d.f. in (−∞,∞)
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Expectation: Mean, Variance and Moments

expectation of any function of a random variable f(X) is
defined as

E
[
f(X)

]
=

∫ +∞

−∞
f(x) p(x) dx or E

[
f(X)

]
=
∑
x

f(x) p(x)

mean of a random variable X: E[X]

◦ the mean indicates the center of the distribution

variance of X: var
(
X
)

= E
[(
X − E[X]

)2]
◦ the variance tells the average deviation from the center

r-th moment of X: E[Xr] (∀r ∈ N)

show: var
(
X
)

= E
[
X2
]
−
(
E[X]

)2
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Joint Distributions

joint distributions of multiple random variables are multivariate
probability functions defined in the product space of their domains

joint p.m.f. for two discrete RVs

p(x, y)
∆
= Pr(X = x, Y = y)

◦ ∀x ∈ {x1, · · · }, y ∈ {y1, · · · }
◦
∑
x

∑
y p(x, y) = 1

joint p.d.f. for two continuous RVs

Pr
(
(x, y) ∈ Ω

)
=

∫ ∫
Ω
p(x, y)dxdy

◦
∫ +∞
−∞

∫ +∞
−∞ p(x, y) dxdy = 1

y \ x x1 x2 x3

y1 0.03 0.24 0.17

y2 0.23 0.11 0.22
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Marginal and Conditional Distributions

a joint distribution fully specifies all random variables
marginalization (a.k.a. the rule of sum in probability)
◦ joint distribution → marginal distribution

p(x) =

∫ +∞

−∞
p(x, y)dy or p(x) =

∑
y

p(x, y)

conditional distribution: p(x | y)
∆
= p(x,y)

p(y)
◦ the general product rule in probability:

p(x1, x2, x3, · · · ) = p(x1) p(x2|x1) p(x3|x1, x2) · · ·
◦ conditional expectation: EX

[
f(X)

∣∣Y = y0

]
◦ conditional mean: EX

[
X
∣∣Y = y0

]
covariance: cov(X,Y ) = E

[
(X − E[X])(Y − E[Y ])

]
independence ⇐⇒ p(x, y) = p(x) p(y) (∀x, y)
uncorrelatedness ⇐⇒ cov(X,Y ) = 0
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Probability Distributions of Random Vectors

random vector: whose elements are all random variables

p
(
x1, x2, x3︸ ︷︷ ︸

x

, y1, y2, y3, y4︸ ︷︷ ︸
y

)
= p(x,y)

conditional distribution: p(x |y)
∆
= p(x,y)

p(y)

mean vector: E[x] =
∫

x p(x) dx =
∫ ∫

x p(x,y) dxdy or
E
[
x
]

=
∑

x

∑
y x p(x,y)

covariance matrix: cov(x,y) = E
[
(x− E[x])(y − E[y])ᵀ

]
the rule of sum: p(x) =

∫
p(x,y) dy or p(x) =

∑
y p(x,y)

the general product rule: p(x,y, z) = p(x) p(y|x) p(z|x,y)
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Common Probability Distributions

Binomial Distribution

Multinomial Distribution

Beta Distribution

Dirichlet Distribution

Univariate Gaussian (Normal) Distribution

Multivariate Gaussian Distribution

Poisson Distribution

Uniform Distribution

Gamma Distribution

inverse-Wishart Distribution

von Mises–Fisher Distribution
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Binomial Distribution

B(r
∣∣N, p) ∆

= Pr(X = r) =
N !

r! (N − r)!
pr(1− p)N−r

parameters: N ∈ N and p ∈ [0, 1]

support: the domain of the random
variable is r ∈

{
0, 1, · · ·N

}
mean and variance:

E[X] = Np

var(X) = Np(1− p)

sum-to-one constraint:∑N
r=0 B(r

∣∣N, p) = 1

Figure: binomial distributions are
unimodal
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Multinomial Distribution

Mult
(
r1, r2, · · · , rm

∣∣N, p1, p2, · · · , pm
) ∆

= Pr(X1 = r1, · · · , Xm = rm)

=
N !

r1! r2! · · · rm!
pr11 pr22 · · · p

rm
m

multivariate extension of binomial distribution

parameters: N ∈ N; 0 ≤ pi ≤ 1 (∀i) and
∑m

i=1 pi = 1

support (the domain of m random variables):
ri ∈ {0, 1, · · ·N} (∀i = 1, · · · ,m) and

∑m
i=1 ri = N

means, variances and covariances:
E
[
Xi

]
= Npi and var(Xi) = Npi(1− pi) (∀i)

cov(Xi, Xj) = −Npipj (∀i, j)
sum-to-one:

∑
r1···rm Mult

(
r1, · · · , rm

∣∣N, p1, · · · , pm
)

= 1
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Beta Distribution

Beta
(
x
∣∣α, β) =

Γ(α+ β)

Γ(α)Γ(β)
xα−1 (1− x)β−1

parameters: α > 0 and β > 0

support: x ∈ R and 0 ≤ x ≤ 1

mean and variance:

E
[
X
]

=
α

α+ β

var(X) =
αβ

(α+ β)2(α+ β + 1)

sum-to-one:
∫ 1

0 beta
(
x |α, β) dx = 1
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Dirichlet Distribution (I)

Dir
(
p1, p2, · · · , pm

∣∣ r1, r2, · · · , rm
)

=
Γ(r1 + · · ·+ rm)

Γ(r1) · · ·Γ(rm)
pr1−1

1 pr2−1
2 · · · prm−1

m

parameters: ri > 0 (∀i = 1, · · · ,m)

support is an m-dimensional simplex:
0 < pi < 1 (∀i = 1, · · · ,m) and

∑m
i=1 pi = 1

means, variances and covariances:
E
[
Xi

]
= ri

r0
var
(
Xi

)
= ri(r0−ri)

r20(r0+1)

cov
(
Xi, Xj

)
= − rirj

r20(r0+1)
, where r0 =

∑m
i=1 ri

sum-to-one inside the simplex:∫
·· ·
∫
p1···pm Dir

(
p1, p2, · · · pm

∣∣ r1, r2, · · · , rm
)
dp1 · · · dpm = 1
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Dirichlet Distribution (II)

multivariate extension of beta distribution

conjugate with multinomial distribution

Dirichlet distributions (m = 3) in the 3-D
simplex:

Figure: i) regular: r1 = 2.0, r2 = 4.0, r3 = 10.0;
ii) symmetric: r1 = r2 = r3 = 4.0;
iii) sparse: r1 = 0.7, r2 = 0.8, r3 = 0.9;

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 2



Linear Algebra Probability and Statistics Information Theory Mathematical Optimization

Univariate Gaussian Distribution

N
(
x |µ, σ2

)
=

1√
2πσ2

e−
(x−µ)2

2σ2

parameters: µ ∈ R and σ2 > 0

support: x ∈ R
mean and variance:

E[X] = µ and var(X) = σ2

sum-to-one:
∫ +∞
−∞ N (x | µ, σ) dx = 1

bell-shaped unimodal

Figure: two univariate
Gaussian distributions
(σ2 > σ1).
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Multivariate Gaussian Distribution

N (x | µ,Σ) =
1√

(2π)n|Σ|
e−

(x−µ)ᵀΣ−1(x−µ)
2

parameters: µ ∈ Rn and Σ ∈ Rn×n � 0

support: x ∈ Rn

mean vector and covariance matrix:

E
[
x
]

= µ and cov
(
x,x

)
= Σ

sum-to-one:
∫
N (x | µ,Σ) dx = 1

any marginal distribution or conditional
distribution is Gaussian.

multivariate unimodal

x =


x1

x2

...
xn



Figure: a multivariate
Gaussian distribution in
2-dimensional space
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Poisson Distribution

Poisson
(
n |λ

) ∆
= Pr(X = n) =

e−λ · λn

n!
∀n = 0, 1, 2 · · ·

parameter: λ > 0

support: the domain of the random
variable

n = 0, 1, 2, · · ·

mean and variance:

E[X] = λ and var(X) = λ

sum-to-one:
∑∞

n=0 Poisson
(
n |λ

)
= 1

ideal distributions for count data
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Transformation of Random Variables

x =


x1

x2
...
xn

 f−→ y =


y1

y2
...
yn


If the transformation f is differentiable and invertible, then

p(y) =
∣∣J(y)

∣∣ p(x) =
∣∣J(y)

∣∣ p(f−1(y)
)

where J(y) denotes the Jacobian matrix of x = f−1(y):

J(y) =

[
∂xi
∂yj

]
n×n

=


∂x1
∂y1

· · · ∂x1
∂yn

...
. . .

...
∂xn
∂y1

· · · ∂xn
∂yn
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Information Theory

Shannon’s information of an event: I(A) = − log2

(
Pr(A)

)
entropy of a random variable: the total amount of uncertainty

H(X) = E[− log2 Pr(X = x)] = −
∑
x

p(x) log2 p(x)

◦ the amount of information to resolve the random variable

joint entropy of two random variables:

H(X,Y ) = EX,Y
[
− log2 Pr(X = x, Y = y)

]
= −

∑
x

∑
y

p(x, y) log2 p(x, y)

conditional entropy:
H(Y |X) = EX,Y [− log2 Pr(Y = y|X = x)]
= −

∑
x

∑
y p(x, y) log2 p(y|x)
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Mutual Information

mutual information:

◦ entropy reduction of X after observing Y
◦ how much Y can tell about X

I(X,Y ) = H(X)−H(X|Y )

=
∑
x

∑
y

p(x, y) log2

( p(x, y)

p(x)p(y)

)
I(X,Y ) = H(Y )−H(Y |X)
= H(X) +H(Y )−H(X,Y )

symmetrical: I(X,Y ) = I(Y,X)

non-negative: I(X,Y ) ≥ 0

I(X,Y ) = 0 iff X and Y are independent
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Example: Mutual Information for Keyword Selection

text categorization: classify text documents into various topics

text documents contain a large number of distinct words

goal: use mutual information as a criterion to automatically
filter out non-informative words

for any word (e.g. score) and a topic (e.g. sports), define two
binary random variables X and Y :

◦ X ∈ {0, 1}: whether a document’s topic is sports or not
◦ Y ∈ {0, 1}: whether a document contains score or not
◦ I(X,Y ) =⇒ relationship between score and sports
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Example: Mutual Information for Keyword Selection

count all training documents to estimate p(X,Y )

compute mutual information: p(X,Y )→ I(X,Y )

p(X=1,Y=1)= # of docs with topic sports and containing score
total # of docs in the corpus

p(X=1,Y=0)= # of docs with topic sports but not containing score
total # of docs in the corpus

I(X,Y ) =
∑
x∈{0,1}

∑
y∈{0,1} p(x,y) log2

p(x,y)
p(x)p(y)

= 0.126

p(x,y) y=0 y=1 p(x)

x=0 0.80 0.02 0.82

x=1 0.11 0.07 0.18

p(y) 0.91 0.09

for another pair, e.g. what vs. sports, I(X,Y )=0.00007

sports is a keyword for the topic sports, what is not

repeat the above procedure for all pairs of words and topics to
identify keywords
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KL Divergence (I)

KL divergence is a criterion to measure the difference between
two probability distributions that have the same support

KL
(
p(x)

∥∥ q(x)
)

∆
= Ex∼p(x)

[
log
(p(x)

q(x)

)]
=
∑
x

p(x) log
(p(x)

q(x)

)

Theorem 1

The KL divergence is always non-negative:

KL
(
p(x)

∥∥ q(x)
)
≥ 0

And KL
(
p(x)

∥∥ q(x)
)

= 0 iff p(x) = q(x) holds almost everywhere.

proved as a corollary from Jensen’s inequality
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KL Divergence (II)

KL
(
q(x) || p(x)

)
represents the amount of information lost

when we replace one probability distribution p(x) with another
distribution q(x)

when using a simple model q(x) to approximate a complicated
model p(x), the best-fit q∗(x) may be derived as:

q∗(x) = arg min
q(x)

KL
(
q(x) || p(x)

)
KL divergence vs. mutual information

◦ I(X,Y ) = KL
(
p(x, y) ‖ p(x)p(y)

)
◦ mutual information can be viewed as the information gain from

the assumption of independence
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General Formulation for Optimization

the general formulation for all optimization problems:

x∗ = arg min
x

f(x)

subject to
hi(x) = 0 (i = 1, 2, · · · ,m)

gj(x) ≤ 0 (j = 1, 2, · · · , n)

where m equality constraints and n inequality constraints jointly
define a non-empty feasible set Ω for the free variables x.

two special cases:

◦ linear programming
◦ convex optimization
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Optimality Conditions

optimality conditions: the necessary and/or sufficient
conditions for any x∗ to be an optimal solution of an
optimization problem

optimality conditions may help to derive the analytic solution
to some simple optimization problems

three cases from easy to hard:

◦ unconstrained optimization

◦ optimization under equality constraints

◦ general optimization subject to both inequality and equality
constraints

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 2



Linear Algebra Probability and Statistics Information Theory Mathematical Optimization

Optimality Conditions: Unconstrained Optimization (I)

x∗ = arg min
x∈Rn

f(x)

global minimum (maximum)

local minimum (maximum)

stationary point:

∇f(x̂)
∆
=
∂f(x)

∂x

∣∣∣
x=x̂

= 0

critical point: a stationary point or
an undifferentiable point

saddle point: a stationary point but
not a local minimum (maximum)
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Optimality Conditions: Unconstrained Optimization (II)

Figure: a diagram for any differentiable function

Theorem 2 (necessary condition for unconstrained optimization)

Assume f(x) is differentiable everywhere. If x∗ is a local
minimum, then x∗ must be a stationary point, i.e. the gradient
vanishes at x∗ as ∇f(x∗) = 0.
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Optimality Conditions: Unconstrained Optimization (III)

Hessian matrix: H(x) =

[
∂2f(x)
∂xi∂xj

]
n×n

Theorem 3 (second order necessary condition)

Assume f(x) is twice differentiable. If x∗ is a
local minimum, then ∇f(x∗) = 0 and
H(x∗) � 0.

Theorem 4 (second order sufficient condition)

Assume f(x) is twice differentiable. If a point
x∗ satisfies ∇f(x∗) = 0 and H(x∗) � 0, then
x∗ is an isolated local minimum.

i) isolated minimum: H(x)�0

ii) flat valley: H(x)�0 and H(x)6=0

iii) plateau: H(x)=0
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Optimality Conditions: Equality Constraints (I)

x∗ = arg min
x

f(x)

subject to hi(x) = 0 (i = 1, 2, · · · ,m)

Theorem 5 (Lagrange necessary conditions)

Given f(x) and {hi(x)} are differentiable.
If a point x∗ is a local optimum, then the
gradients of these functions are linearly
dependent at x∗:

∇f(x∗) +
m∑
i=1

λi∇hi(x∗) = 0

where λi ∈ R are the Lagrange multipliers.

stationary points of f(x) may

not satisfy the constraints.

min
x,y

f(x, y)

subject to

h(x, y) = 0
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Optimality Conditions: Equality Constraints (II)

Theorem 5 suggests the method of Lagrange multipliers

introduce a Lagrange multiplier λi ∈ R for each equality
constraint

construct the Lagrangian function:

L
(
x, {λi}

)
= f(x) +

m∑
i=1

λi hi(x)

minimize the Lagrangian function w.r.t. x and all Lagrange
multipliers {λi}, converting a constrained optimization
problem into an unconstrained one

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 2



Linear Algebra Probability and Statistics Information Theory Mathematical Optimization

Optimality Conditions: Inequality Constraints

x∗ = arg min
x

f(x)

subject to
hi(x) = 0 (i = 1, 2, · · · ,m)

gj(x) ≤ 0 (j = 1, 2, · · · , n)

introduce a multiplier λi ∈ R for each equality constraint

introduce a multiplier νi ≥ 0 for each inequality constraint

construct a Lagrangian function:

L
(
x, {λi, νj}

)
= f(x) +

m∑
i=1

λi hi(x) +

n∑
j=1

νj gj(x)

optimize L
(
x, {λi, νj}

)
for the optimality conditions
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Dual Problem and Strong Duality

Lagrange dual function: defined as the lower-bound w.r.t. x

L∗
(
{λi, νj}

)
= inf

x∈Ω
L
(
x, {λi, νj}

)
generally L∗

(
{λi, νj}

)
≤ L

(
x, {λi, νj}

)
≤ f(x) for all x ∈ Ω

Lagrange dual problem:

{λ∗i , ν∗j } = arg max
{λi,νj}

L∗
(
{λi, νj}

)
subject to νj ≥ 0 for all j = 1, 2, · · · , n
strong duality occurs if L∗

(
{λ∗i , ν∗j }

)
= f(x∗), under which

the dual problem is equivalent to the original problem
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Optimality Conditions: KKT Conditions

Theorem 6 (KKT necessary conditions)

If x∗ and {λ∗i , ν∗j } is a saddle point of L
(
x, {λi, νj}

)
,

then x∗ is a local minimum. The saddle point
satisfies the following conditions:

1 stationariness:
∇f(x∗)+

∑m
i=1 λ∗

i ∇hi(x
∗)+

∑n
j=1 ν∗

j ∇gj(x∗)=0

2 primal feasibility:
hi(x

∗) = 0 (i = 1, 2, · · · ,m)
gj(x

∗) ≤ 0 (j = 1, 2, · · · , n)

3 dual feasibility: ν∗j ≥ 0 (j = 1, 2, · · · , n)

4 complementary slackness:
ν∗j gj(x

∗) = 0 (j = 1, 2, · · · , n)

strong duality =⇒ x∗

and {λ∗i , ν∗j } is a saddle
point
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Numerical Optimization Methods

optimality conditions do not always yield a useful closed-form
solution

many optimization problems in machine learning require
iterative numerical methods

take the unconstrained optimization problem as example

arg min
x∈Rn

f(x)

numerical optimization methods
◦ zero-order methods: using the function values alone, such as

grid search
◦ first-order methods: using the function values and gradients,

such as gradient descent method
◦ second-order methods: using the function values, gradients

and Hessians, such as Newton method
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First-order Methods: Gradient Descent Method

the gradient points to a direction of the fastest increase of the
function value

gradient descent: repeatedly move a small step along the
direction of the negative gradient until converged

Gradient Descent Method

randomly choose x(0), and set η0

set n = 0
while not converged do

update: x(n+1) = x(n) − ηn∇f(x(n))
adjust: ηn → ηn+1

n = n+ 1
end while
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First-order Methods: Stochastic Gradient Descent (I)

the objective function f(x) in machine learning can often be
decomposed as a sum of homogeneous components:

f(x) =
1

N

N∑
i=1

fi(x)

e.g. fi(x) indicates the loss measure on each training sample

when N is large, it is too expensive to compute

∇f(x) =
1

N

N∑
i=1

∇fi(x)

stochastic gradient descent: estimate ∇f(x) using a
random sample or a small subset (mini-batch) of random
samples at each time
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First-order Methods: Stochastic Gradient Descent (II)

Stochastic Gradient Descent (SGD)

randomly choose x(0), and set η0

set n = 0
while not converged do

randomly choose a sample k
update: x(n+1) = x(n) − ηn∇fk(x(n))
adjust: ηn → ηn+1

n = n+ 1
end while
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First-order Methods: Stochastic Gradient Descent (III)

Mini-batch SGD

randomly choose x(0), and set η0

set n = 0
while not converged do

randomly shuffle all training samples into mini-batches
for each mini-batch B do

update: x(n+1) = x(n) − ηn
|B|
∑

k∈B∇fk(x)
adjust ηn → ηn+1

n = n+ 1
end for

end while
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Second-order Methods: Newton method

expand f(x) at any fixed x0 according to the Taylor’s theorem

f(x) ≈ f(x0)+
(
x−x0)ᵀ∇f(x0)+

1

2

(
x−x0)ᵀH(x0)

(
x−x0)

∇f(x) = ∂f(x)
∂x = 0 =⇒ x∗ = x0 −H−1(x0)∇f(x0)

Newton method uses the updating rule at each iteration:

x(n+1) = x(n) −H−1(x(n))∇f(x(n))

Newton method is not feasible in machine learning since it is
too costly to invert a Hessian matrix

quasi-Newton methods aim to approximate the Hessian
matrix, e.g. DFP, BFGS, Quickprop, Hessian-free, etc.
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