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Linear Algebra
©00000000

Vectors and Matrices

m a vector: a list of numbers arranged in order
o an abstract way to represent objects in math
o vectors are written in a column, e.g. x € R” and y € R™

T1 Y1
€2 Y2
Tn Ym

® a matrix: a group of numbers arranged in a 2-d array, e.g.

A e R™™
ail a12 T A1n
a1 a22 e a2n

A =
aml Am2 " Oamp
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Linear Algebra
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Matrix Multiplication (1)

m a matrix: representing a particular way to move any point in
one space to another

®m matrix multiplication: the way to implement the above motion

y = Ax (A € R™*™) represents a mapping from a point x in R"
to another point y in R™
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Linear Algebra
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Linear Transformation as Matrix Multiplication

RTL

m matrix multiplication: can only
represent a linear transformation x

m a mapping from R™ to R™ is linear
if and only if : x|

o the origin in R™ is mapped to the
origin in R™

o every straight line in R™ is
always mapped to a straight line
(or a single point) in R™

m nonlinear transformations: require
other methods rather than matrix
multiplication
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Linear Algebra
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Matrix Multiplication (I1)

m matrix multiplication between two
matrices A € R™*" and B € R™*"

C=AB (with CeR™")

J-th column
b bl ey = Y aabi
: I?ki : Vi=1,2--+,m
br1 i brn Vji=1,2,--,n
c A B

m C represents a composition of two linear
transformations: A and B

R"
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Linear Algebra
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Matrix Operations (I)

supplementary slides to Machine Learning Fundamentals

m matrix transpose: A € R™*™ — AT ¢ R™*™
o a square matrix A is symmetric iff A = AT

o (AT)"=A (AB)"=BTAT (A+£B) =AT+BT
m determinant: |A| € R for a square matrix A € R™*"
m inverse matrix A~!: for an n x n square matrix A jif
ATTA=AA1=1
m inner-product: w - x (€ R) of two vectors w,x € R”

A n
oW-X=) " wir=wWIx=XTw

o norm (Lg norm) of vector w: ||w|?* =w - w

m trace of an n x n square matrix: tr(A) = >"" | a;

[C)
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Linear Algebra
00000@000

Matrix Operations (II)

m eigenvalues and eigenvectors of an n X n square matrix A:
Au=)Xu with A €R and non-zero u € R"

m A symmetric matrix is positive definite (or semi-definite) if
all eigenvalues are positive (or non-negative).

m If a square matrix A € R™*"™ has n orthogonal eigenvectors u;
(i=1,2,---,n): Au; = \;u; (normalized as ||u;|| = 1),
then A can be factorized as A = UA UT.

AN O - 0 .

| Tlo » - of [ | |
A=|u uwu - u, . o ) u; up uy,

S | O A
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Linear Algebra
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Matrix Calculus

If y is a function involving all elements of a vector x (or a matrix

A), %y( (or %) is a vector (or a matrix) of the same size.
1 ail
T2 a2
X = and A=
Tn am1
Oy Oy
%1751 3511
oYy oy
@ é aétz and ay é 8(121
ox : 0A ;
Jy 9y
OTn Oam1
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éay 88y
a2 ay
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Linear Algebra
000000080

Matrix Calculus Formula for Machine Learning (I)

x (xTx) =2x
e (<79) =
% (XTAX) =Ax+ ATx

3}
_ T = i
% (x Ax) 2Ax (symmetric A)

as)
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Linear Algebra
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Matrix calculus formula for machine learning (II)

a‘i(xTA—ly) = —(AT) lxyT(AT)"! (square A)

2 (WlA]) = (AT = (A1) (square A)

O?A(tr(A)) =1 (square A)
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Probability and Statistics
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Random Variables

supplementary slides to Machine Learning Fundamentals

probability Pr(A): a real number between 0 and 1, indicating
how likely a random event A is to occur

m random variables: taking different values in different
probabilities, e.g. X,Y, Z,---
o discrete random variables (RVs)
o continuous random variables (RVs)
m a random variable is fully specified by two ingredients:

o its domain: the set of all possible values
o its probability distribution: how likely it takes each value

a probability function is used to characterize how likely a
random variable may take each value in the domain

©
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Probability and Statistics
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Probability Functions

m probability mass functions (p.m.f)
for discrete random variables
o p(x) £ Pr(X = z) in the domain

T ‘x1‘$2‘$3‘$4

p(z) [ 04]03]02]01

Vo € {1,290, -} Table: an example of p.m.f
o sum-to-one constraint:
> p(r) =1

m probability density functions (p.d.f)
for continuous random variables

o define p(x) to ensure
Pria< X <b) = fab p(x) dw
o sup—to—one constraint: .
Jooo p@)de =1 Figure: a p.d.f. in (—o0, )
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Probability and Statistics
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Expectation: Mean, Variance and Moments

m expectation of any function of a random variable f(X) is
defined as

+o0
E[f(X)]—/ F)pte)de or B[] =3 1@

—0o0

m mean of a random variable X: E[X]
o the mean indicates the center of the distribution
m variance of X: var(X) = E[(X — IE[X])2]
o the variance tells the average deviation from the center

m 7-th moment of X: E[X"]| (Vr € N)
m show: var(X) = E[X?] - (E[X])?
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Probability and Statistics
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Joint Distributions

joint distributions of multiple random variables are multivariate
probability functions defined in the product space of their domains

m joint p.m.f. for two discrete RVs
ple,y) EPr(X = 2,Y =y)

oVxe{ry, - hy€{y,-} AR ()x013 055224 033137
Yo 0.23 | 0.11 | 0.22

m joint p.d.f. for two continuous RVs
Pr ((z,y) € Q) Z//Qp(w,y)dxdy
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Probability and Statistics
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Marginal and Conditional Distributions

a joint distribution fully specifies all random variables
marginalization (a.k.a. the rule of sum in probability)
o joint distribution — marginal distribution

+oo
p@) = [ sy o o)=Y play)

— 00 v

m conditional distribution: p(x |y) 2 ng;(x;),)

o the general product rule in probability:

p(ﬂfl, T2,T3, " ') = p(ﬂ?l)p(@\m)p(ﬂ?z’)lml, $2) o

o conditional expectation: Ex [f(X) |Y = yo]

o conditional mean: Ex [X } Y = yo]
m covariance: cov(X,Y) = E[(X — E[X])(Y — E[Y])]
m independence <= p(z,y) = p(z)p(y) (Vz,y)
m uncorrelatedness <= cov(X,Y) =0
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Probability and Statistics
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Probability Distributions of Random Vectors

m random vector: whose elements are all random variables

p($1a5527$37917y2a93,y4) = p(an)
—
X y

p(x,y)
p(y)

m mean vector: E[x] = [ xp(x)dx = [ [ xp(x,y)dxdy or
E[x] =3, >, xp(x,y)

m covariance matrix: cov(x y) =E[(x — E[x])(y — Ely])T]

m the rule of sum: p(x) = [ p(x,y)dy or p(x) = >y P(%,y)

m the general product ruIe p(x,y,2z) = p(x) p(y|x) p(z|x,y)

m conditional distribution: p(x|y) a
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Probability and Statistics
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Common Probability Distributions

Binomial Distribution

Multinomial Distribution

Beta Distribution

Dirichlet Distribution

Univariate Gaussian (Normal) Distribution
Multivariate Gaussian Distribution

Poisson Distribution
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Probability and Statistics
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Binomial Distribution

B | Nop) 2 Pr(X = 1) = e (1= )

m parameters: N € Nand p € [0,1]

02
BEN-20,p=0.7

m support: the domain of the random
variable is r € {0,1,--- N} 015

® mean and variance: 1
E[X] = Np | I I
0 __.I I-A
0 2 4 6 8 10 12 14 16 18 20

var(X) = Np(1 —p)

°

o
s

Figure: binomial distributions are
m sum-to-one constraint: unimodal

ny:O B(r|N,p)=1
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Probability and Statistics
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Multinomial Distribution

A
MUIt(Tla’rQa"' y T'm | N, p1,p2,--- 7pm) = Pr(Xl =71, Xm = Tm)

N!
- 7‘1!7"2! rm! p;lp? p%”

m multivariate extension of binomial distribution
m parameters: N € N; 0 <p; <1 (Vi) and X" p;i=1
m support (the domain of m random variables):

ri€{0,1,---N} (Vi=1,--- ,m)and Y ;" r; =N
m means, variances and covariances:

E[X;] = Np; and var(X;) = Np;(1 —p;) (Vi)

cov(X;, X;) = —Npip; (Vi ))
® sum-to-one: Zr1~~-rm I\/Iult(n7 S Tm ‘ N,py,--- ,pm) =1
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Probability and Statistics
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Beta Distribution

T(a+B)

Beta(x ‘ 04,5) - W

2 (1 —2)P !

m parameters: « > 0and 5> 0

msupport: € R and 0<z <1 "
® mean and variance: o
a monotonic
E X — 0<a<l<f
[X] a+ B b<s<i<a
04,8 bimodal JM: =
var(X) = =
( ) (a_i_B)Q(a_i_ﬂ_‘_l) 0<a,B<1
® sum-to-one: fol beta(z |, ) dz =1 = -
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Probability and Statistics
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Dirichlet Distribution (1)

Dir(p1,p2;- s Pm | 71,72, Tm)

_ F(T’l + et rm) ri—1_ro—1 Tm—1
T T(ry) - D(rm) VT2 Pm

m parameters: r; >0 (Vi=1,---,m)
m support is an m-dimensional simplex:
O0<pi<l (Vi=1,---,m)and Y " pi=1
B means, variances and covari?nces:)
1 N\ _ ri(ro—ri
E[XZ] 10 Var(X’L) - rg(ro—l-l)

X)) = i o
cov(X;, X;) = oy Where ro = 3 i

B sum-to-one inside the simplex:
S Lo, Dir(1, 02, oo | 71,72, 1) dpr -+ - dpy = 1
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Probability and Statistics
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Dirichlet Distribution (I1)

m multivariate extension of beta distribution
m conjugate with multinomial distribution
m Dirichlet distributions (m = 3) in the 3-D

simplex:

00.1) ©,01)

©0.00)
©0,1,0) ©0.1.0)

.10

(1,0,00 (1,0,0) 00

Figure: i) regular: r; = 2.0,ry = 4.0,r3 = 10.0;
i) symmetric: 7y = ro =13 = 4.0;
iii) sparse: r; = 0.7,75 = 0.8,r3 = 0.9;
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Probability and Statistics
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Univariate Gaussian Distribution

Nalwo®) = Fomg e

\N(@|p1,03)

parameters: 1 € R and 02 > 0

support: x € R

N (x| p2,03)

m mean and variance: [\ Z 0
E[X]=p and var(X)=o? n 2
oo _ Figure: two univariate
m sum-to-one: [ N(z | p,0) do = 1 Gaussian distributions
m bell-shaped unimodal (o2 > 01).
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Probability and Statistics
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Multivariate Gaussian Distribution

Nocw2) = s ¢

m parameters: u € R® and X € R™*" > 0
m support: x € R”

m mean vector and covariance matrix:
E[x] =p and cov(x,x) =3

m sum-to-one: [N (x| p,X)dx =1
m any marginal distribution or conditional
distribution is Gaussian.

m multivariate unimodal

supplementary slides to Machine Learning Fundamentals
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2

x
1)

Tn

Figure: a multivariate
Gaussian distribution in
2-dimensional space
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Probability and Statistics
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Poisson Distribution

. A
Pmsson(nM)zPr(in)zT Vn=0,1,2---
m parameter: A >0
m support: the domain of the random ,
variable 5
n=012,--- M
el A=50
® mean and variance:
E[X]=A and var(X)=A\ 4}

m sum-to-one: » 7 Poisson(n|\) =1

m ideal distributions for count data
supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press
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Probability and Statistics
000000000000000e

Transformation of Random Variables

z ('l
L2 f Y2
Tn Yn

If the transformation f is differentiable and invertible, then

p(y) =3I [ p(x) = [I) [ p(/(¥))
where J(y) denotes the Jacobian matrix of x = f~!(y):

Oz ., Oz
0 Oyn
y) = = : :
ayj nxn drn .. Ozn
oy1 OYn,
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Information Theory
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Information Theory

= Shannon’s information of an event: I(A) = —log, ( Pr(4))
m entropy of a random variable: the total amount of uncertainty

H(X) =E[-logy Pr(X = x)] = =) p(x)log, p(z)

T

o the amount of information to resolve the random variable
m joint entropy of two random variables:

H(X,Y) = Exy [ —logy Pr(X =2,V = y)]
= = pl.y)logyp(,y)
x Y

m conditional entropy:
H(Y|X) = Ex,y[-logy Pr(Y = y|X = z)]
== 2y P(z,y)logy p(y|z)
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Information Theory
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Mutual Information

= mutual information:

o entropy reduction of X after observing Y’
o how much Y can tell about X

I(X,)Y) = H(X)-H(X|Y) e =

= S stenion (1500)

m [(X,Y)=H(Y) - HY|X)

= H(X)+H(Y) - H(X,Y)
m symmetrical: I(X,Y) = I(Y, X)
m non-negative: I(X,Y) >0

\_/

f‘f(x'.'y)

m [(X,Y)=0iff X and Y are independent
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Information Theory
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Example: Mutual Information for Keyword Selection

m text categorization: classify text documents into various topics

m text documents contain a large number of distinct words

m goal: use mutual information as a criterion to automatically
filter out non-informative words

m for any word (e.g. score) and a topic (e.g. sports), define two
binary random variables X and Y:
o X €{0,1}: whether a document's topic is sports or not
o Y €{0,1}: whether a document contains score or not
o I(X,Y) = relationship between score and sports

[G)
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Information Theory
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Example: Mutual Information for Keyword Selection

m count all training documents to estimate p(X,Y)
m compute mutual information: p(X,Y) — I(X,Y)

_ __1\__ # of docs with topic sports and containing score
p(X—].,Y—l) total # of docs in the corpus

p(z,y) | y=0 | y=1
PX =1, =0)— ofdock it opi sprts bu vt conaining score 220 0,89 | 002
=1 0.11 0.07
p(y) 0.91 | 0.09
I(X,)Y) = 3eqo1} 2oyefo,1} P(y) logy pfia)v;,%;)
= 0.126

m for another pair, e.g. what vs. sports, 1(X,Y)=0.00007
m sports is a keyword for the topic sports, what is not

m repeat the above procedure for all pairs of words and topics to

identify keywords
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KL Divergence (I)

KL divergence is a criterion to measure the difference between
two probability distributions that have the same support

KL(p(a:) | q(:c)) = Egnp(a) [105% (Mﬂ = Z p(z) log <M>

q(x)

The KL divergence is always non-negative:

KL(p(2) || a(2)) = 0

And KL (p(x) || q(x)) = 0 iff p(x) = q(x) holds almost everywhere.

proved as a corollary from Jensen's inequality
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KL Divergence (1)

m KL(g(z) || p(x)) represents the amount of information lost
when we replace one probability distribution p(x) with another
distribution ¢(x)

m when using a simple model g(x) to approximate a complicated
model p(x), the best-fit ¢*(x) may be derived as:

q¢*(z) = arg rqr(lir)l KL(q(2) || p(x))

m KL divergence vs. mutual information
o I(X,Y) = KL(p(z,y) | p(=)p(y))
o mutual information can be viewed as the information gain from
the assumption of independence
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Mathematical Optimization
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General Formulation for Optimization

the general formulation for all optimization problems:
x* = argmin f(x)
X

subject to
hi(x) =0 (i=1,2,---,m)
gi(x) <0 (j=1,2,---,n)
where m equality constraints and n inequality constraints jointly
define a non-empty feasible set {2 for the free variables x.
m two special cases:

o linear programming
o convex optimization
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Mathematical Optimization
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Optimality Conditions

m optimality conditions: the necessary and/or sufficient
conditions for any x* to be an optimal solution of an
optimization problem

m optimality conditions may help to derive the analytic solution
to some simple optimization problems

m three cases from easy to hard:
o unconstrained optimization

o optimization under equality constraints

o general optimization subject to both inequality and equality
constraints
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Mathematical Optimization
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Optimality Conditions: Unconstrained Optimization (I)

x* = arg min f(x)
x€ER™

D global maximum

local maximum

m global minimum (maximum)
m local minimum (maximum)

m stationary point:

“*~..local minimum

A a x e global minimum
v 2 ) g

0ox  Ix=x 5;3;’"‘;/,
m critical point: a stationary point or \4

an undifferentiable point

m saddle point: a stationary point but
not a local minimum (maximum)
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Mathematical Optimization
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Optimality Conditions: Unconstrained Optimization (II)

global local
local stationary critical
/7 extremeé > point point
global local X /
: i i saddle |
i point |

Figure: a diagram for any differentiable function

Theorem 2 (necessary condition for unconstrained optimization)

Assume f(x) is differentiable everywhere. If x* is a local

minimum, then x* must be a stationary point, i.e. the gradient
vanishes at x* as V f(x*) = 0.
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Mathematical Optimization
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Optimality Conditions: Unconstrained Optimization (llI)

Hessian matrix: H(x) = [ gifg;) ]
¢ J nxn

Theorem 3 (second order necessary condition)

Assume f(x) is twice differentiable. If x* is a
local minimum, then V f(x*) = 0 and
H(x*) > 0.

Theorem 4 (second order sufficient condition)

Assume f(x) is twice differentiable. If a point
x* satisfies V f(x*) = 0 and H(x*) - 0, then
x* is an isolated local minimum.

i) isolated minimum: H(X)>—0
ii) flat valley: H(X)EO and H(X);ﬁo
iii) plateau: H(X):O
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Mathematical Optimization
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Optimality Conditions: Equality Constraints (I)

x* = argmin f(x) stationary points of f(x) may
x not satisfy the constraints.
subject to h;(x) =0 (i=1,2,---,m)

v

Theorem 5 (Lagrange necessary conditions) A T =0
Given f(x) and {h;(x)} are differentiable. P S =iy e VY
. . : L
If a point x* is a local optimum, then the '
fixy) =d.
gradients of these functions are linearly b ) =
dependent at x*: ‘ "
- min f(z,y)
* * i
Vf(x") + Z Ai Vhi(x") =0 subject to
i=1
h(z,y)=0

where \; € R are the Lagrange multipliers.
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Mathematical Optimization
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Optimality Conditions: Equality Constraints (II)

m Theorem 5 suggests the method of Lagrange multipliers

m introduce a Lagrange multiplier \; € R for each equality
constraint

m construct the Lagrangian function:

L(x, {\}) = +Z)\h

® minimize the Lagrangian function w.r.t. x and all Lagrange
multipliers {\;}, converting a constrained optimization
problem into an unconstrained one
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Mathematical Optimization
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Optimality Conditions: Inequality Constraints

x" = arg m)in f(x)
subject to
hi(x)=0 (i=1,2,---,m)
gi(x) <0 (j=1,2,---,n)
m introduce a multiplier \; € R for each equality constraint

m introduce a multiplier v; > 0 for each inequality constraint
m construct a Lagrangian function:

L(x, {\,v5}) = +2Ah )+ vigi(x)
j=1

m optimize L(x, {)\;,v;}) for the optimality conditions
J
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00000000e0000000

Dual Problem and Strong Duality

m Lagrange dual function: defined as the lower-bound w.r.t. x
2 (0n) = jnf, £ o)

m generally L* ({)\i, vi}) < L<x, {)\i,uj}> < f(x) forall x € Q
m Lagrange dual problem:

L) = (D

{A),vj} = arg [nax, ({ u]})

subject tov; > 0 forall j =1,2,--- ., n

m strong duality occurs if L* ({\}, v} v ) = f(x*), under which
the dual problem is equivalent to the original problem
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Mathematical Optimization
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Optimality Conditions: KKT Conditions

Theorem 6 (KKT necessary conditions)

. *
If x* and {\},v5} is a saddle point of L(x,{)i,v;}), strong *duailty. = X
then x* is a local minimum. The saddle point and {\}, 7} is a saddle
satisfies the following conditions: point

stationariness:

VD) AL Vhi(xH)+27 vi Vg (x7)=0

primal feasibility:
hz<x*) =0 (’L =1,2,--- ,m)
gi(x*) <0 (j=1,2,---,n)
dual feasibility: V;‘ >0 (j=1,2,---,n)

L({i;5})
complementary slackness:

v gi(x") =0 (j =1,2,+- ,m)
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Numerical Optimization Methods

m optimality conditions do not always yield a useful closed-form
solution

B many optimization problems in machine learning require
iterative numerical methods

m take the unconstrained optimization problem as example
arg min f(x
g min f(x)

m numerical optimization methods
o zero-order methods: using the function values alone, such as
grid search
o first-order methods: using the function values and gradients,
such as gradient descent method
o second-order methods: using the function values, gradients
and Hessians, such as Newton method
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First-order Methods: Gradient Descent Method

m the gradient points to a direction of the fastest increase of the
function value

m gradient descent: repeatedly move a small step along the
direction of the negative gradient until converged

Gradient Descent Method

randomly choose x(9), and set 7

setn =20

while not converged do
update:  x("tD) = x( _p Vf(x™)
adJUSt: Mn = Nnt1
n=n+1

end while
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Mathematical Optimization
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First-order Methods: Stochastic Gradient Descent (1)

m the objective function f(x) in machine learning can often be
decomposed as a sum of homogeneous components:

1 N
F) = 5 3 £i)

e.g. fi(x) indicates the loss measure on each training sample
m when N is large, it is too expensive to compute

N
1
Vf(x) = Nz; V fi(x)
1=
m stochastic gradient descent: estimate V f(x) using a

random sample or a small subset (mini-batch) of random
samples at each time
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First-order Methods: Stochastic Gradient Descent (1)

Stochastic Gradient Descent (SGD)

randomly choose x(?), and set 1
setn=20
while not converged do
randomly choose a sample k&
update:  x("tD) = x( —p Vf(x()
adeSt: Mn = Mn+1
n=n+1
end while
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First-order Methods: Stochastic Gradient Descent (I11)

Mini-batch SGD

randomly choose x(?), and set 7
setn=20
while not converged do
randomly shuffle all training samples into mini-batches

for each mini-batch B do
update: x(1) = x() 151 2-ken VIr(X)
adjust 7, — M1
n=n-+1
end for
end while
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Second-order Methods: Newton method

m expand f(x) at any fixed X according to the Taylor's theorem

f(x) = f(x0) + (X*XO)TVf(Xo) +%(X*X0)TH(X0)(XfXO)

m Vf(x)= a’;ﬁi‘) =0 = x*=x9—H !(x0) Vf(x0)
m Newton method uses the updating rule at each iteration:

<+l — (n) _ H—l(x(n)) Vf(x(”))

m Newton method is not feasible in machine learning since it is
too costly to invert a Hessian matrix

m quasi-Newton methods aim to approximate the Hessian
matrix, e.g. DFP, BFGS, Quickprop, Hessian-free, etc.
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