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Feature Extraction
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Feature Extraction

m feature engineering
o use domain knowledge to manually
extract features from raw data
o e.g. bag-of-words for text, MFC features ittt ot Rt
for speech/audio, SIFT features for e
. . to settle legal claimis
image/video

m feature normalization:

o normalize each dimension towards
zero-mean and unit-variance

m feature selection

% |=|=I‘~;‘|v°|~|°I~I°I-'|°|-I°I-I~I=_'I~|

an

art

cancel
claim
xhibton
fear
london

russian

o select a subset of the most informative Figure: represent_ a te>ft
features and discard the rest document as a fixed-size
o e.g. filter, wrapper or embedded method bag-of-words feature vector

m dimensionality reduction
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Feature Extraction
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Dimensionality Reduction

m utilize a mapping function to convert
high-dimensional feature vectors to
lower-dimensional ones while retaining the
information as much as possible

m the function f(-) maps any point in an v = f(x)
n-dimensional space to a point in an
m-dimensional space, where m < n

m choices for f(-):

o linear transformation

o piece-wise linear functions
o nonlinear functions

o neural networks

yeR™
x € R™

m the learning criterion: what to retain
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Linear Dimension Reduction
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Linear Dimension Reduction

m use a linear mapping function
y=/f(x)=Ax
where A € R™*™ denotes all parameters to be estimated

m depending on the learning criterion:
o principal component analysis (PCA)

o linear discriminant analysis (LDA)
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Linear Dimension Reduction
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Principal Component Analysis (PCA)

m more information <= larger variance

m PCA aims to search for some orthogonal
projection directions to achieve the
maximum variances
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S : sample covariance matrix
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Linear Dimension Reduction
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Principal Component Analysis (PCA)

m the principal components can be derived:

W = argmax w'Sw
w
subject to
wlw =1

m the method of Lagrange multipliers leads to a closed-form
solution:
Sw=Aw

where each principal component w is an eigenvector of S
m the projection variance equals to the corresponding eigenvalue:

2 =WISWw =wTAw =\ ||[w|> =\
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Linear Dimension Reduction
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PCA Procedure

compute the sample covariance matrix S A few top eigenvalues
from training data usually dominate the total

calculate the top m eigenvectors of S variance in PCA

form A € R™*™ with an eigenvector in a
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Figure: the distribution of all
for any x € R”, map it toy € R™ as eigenvalues in PCA
y = Ax.
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Linear Dimension Reduction
000000

Inverse PCA Transformation

m truncated PCA (m < n):
method 1: x = ATy #x

method 2: X = ATy + (I— ATA)x # x

original =100 =300

©
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Linear Dimension Reduction
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Linear Discriminant Analysis (I)

m class labels are known

PCA does not always
maximize class
separation

m how to linearly project data in order to
maximize class separation

m Fisher's linear discriminant analysis (LDA)
aims to maximize the ratio:
wTS,w

W = arg max
w WIS, w

o between-class scatter matrix

Sp = e [Ck| (e — 1) (mx — )"

o within-class scatter matrix
K
Sw = Zk:l Sk
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Linear Dimension Reduction
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Linear Discriminant Analysis (II)

m Fisher's LDA is equivalent to the

_ _ g HAMY F QYUY 444
following constrained optimization: 77F%71977 7277777
FPLEB 589885785487

w" = argmax w'S,w
w

subject to
wiS,w=1
m LDA projections correspond to the Pca LDA
. -1
eignenvectors of S, 'S, Figure: PCA vs. LDA projections
m LDA has at most K — 1 projection in 2-dimensional spaces
directions

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 4



Manifold Learning
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Nonlinear Dimension Reduction (I): Manifold Learning
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m manifolds: nonlinear topological structures in a
lower-dimensional space
m manifold learning: identify low-dimensional manifolds using
some non-parametric approaches
o locally linear embedding (LLE)

o multidimensional scaling (MDS)
o stochastic neighborhood embedding (SNE)
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Manifold Learning
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Locally Linear Embedding (LLE)

m assumption 1: a locally linear structure
in the high-D space x; = >y, wijX;

m all pair-wise weights can be derived:

(0} = arg gin 37 i - wi

JEN;

subject to > wi; =1 (Vi)

m assumption 2: the same locally linear
structure is applied to the low-D space

{g:} = argmin 3 flyi - 3 iy |

JEN;

m closed-form solutions exist for LLE
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Manifold Learning
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Multidimensional Scaling (MDS)

m preserve all pair-wise distances when
projecting from high-D to low-D

m all pair-wise distances in high-D:
dij = |lxi — %51 (¥4, 7)
m MDS computes all low-D projections:

. : lyi = y,ll = dij \*
{Yi} = argl{Tslllin ZZ (d;- J)

i g>i

m isometric feature mapping (Isomap)
o only compute pairwise distances for ~ Figure: Isomap uses the shortest

nearby vectors in high-D path in the weighted graph for
o form a sparse graph in the high-D d;j
space
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Manifold Learning
[e]e]e] ]

Stochastic Neighborhood Embedding (SNE)

m define a conditional probability distribution in high-D:
exp (—ilxi—x,1%) o
Vi, j i
Sy exp (—illxi—xx12) (V.5 i #3)
m similarly define a conditional probability distribution in low-D:
o SNE (stochastic neighbor embedding):
exp (—llyi—51I?) .
= Vi,
Srow () 0
o t-SNE (t-distributed stochastic neighbor embedding):
(1+llyi—y,12) " -
qij = = V’L,]
! Dt (1+Hyi_}'k“2) o )
m low-D projections are derived by

{}A’z} = argmin Z KL(IDZ ||Qz) = argmin ZZ Dij lnpﬂ
it 5 i} < ; Qij

bij =

qij
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Neural Feature Extraction
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Nonlinear Dimension Reduction (I1): Neural Networks

m use neural networks as parametric models for
the nonlinear mapping function y = f(x) in
dimensionality reduction

m autoencoder y=f(x)
o unsupervised: does not require class labels

o nonlinear extension of PCA
y €R™

m bottleneck features x €R”
o supervised: requires class labels

o nonlinear extension of LDA
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Neural Feature Extraction
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Autoencoder
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encoder decoder
y=/f(x) x=g(y)

neural networks are learned to minimize the difference between
inputs and outputs: [|x — x||?




Neural Feature Extraction
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Bottleneck Features

bottleneck (BN)
e e o layer i, .

class
:label

BN feature extractor abandoned after training

y = f(x)

neural networks are learned to project inputs x to any given class
labels
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