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Feature Extraction

feature engineering

◦ use domain knowledge to manually
extract features from raw data

◦ e.g. bag-of-words for text, MFC features
for speech/audio, SIFT features for
image/video

feature normalization:

◦ normalize each dimension towards
zero-mean and unit-variance

feature selection

◦ select a subset of the most informative
features and discard the rest

◦ e.g. filter, wrapper or embedded method

dimensionality reduction

Figure: represent a text
document as a fixed-size
bag-of-words feature vector
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Dimensionality Reduction

utilize a mapping function to convert
high-dimensional feature vectors to
lower-dimensional ones while retaining the
information as much as possible

the function f(·) maps any point in an
n-dimensional space to a point in an
m-dimensional space, where m� n

choices for f(·):

◦ linear transformation
◦ piece-wise linear functions
◦ nonlinear functions
◦ neural networks

the learning criterion: what to retain
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Linear Dimension Reduction

use a linear mapping function

y = f(x) = Ax

where A ∈ Rm×n denotes all parameters to be estimated

depending on the learning criterion:

◦ principal component analysis (PCA)

◦ linear discriminant analysis (LDA)
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Principal Component Analysis (PCA)

more information ⇐⇒ larger variance

PCA aims to search for some orthogonal
projection directions to achieve the
maximum variances{

x1,x2, · · · ,xN

} v=wᵀx−−−−→
{
v1, v2, · · · , vN

}
σ2 =

1

N

N∑
i=1

(vi − v̄)(vi − v̄)

= wᵀ
[

1

N

N∑
i=1

(xi − x̄) (xi − x̄)ᵀ︸ ︷︷ ︸
S : sample covariance matrix

]
w
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Principal Component Analysis (PCA)

the principal components can be derived:

ŵ = arg max
w

wᵀSw

subject to
wᵀw = 1

the method of Lagrange multipliers leads to a closed-form
solution:

S ŵ = λ ŵ

where each principal component ŵ is an eigenvector of S

the projection variance equals to the corresponding eigenvalue:

σ2 = ŵᵀSŵ = ŵᵀλ ŵ = λ · ‖ŵ‖2 = λ
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PCA Procedure

1 compute the sample covariance matrix S
from training data

2 calculate the top m eigenvectors of S

3 form A ∈ Rm×n with an eigenvector in a
row

A =


— ŵᵀ

1 —
— ŵᵀ

2 —
...

— ŵᵀ
m —


m×n

4 for any x ∈ Rn, map it to y ∈ Rm as
y = Ax.

A few top eigenvalues
usually dominate the total
variance in PCA

Figure: the distribution of all
eigenvalues in PCA
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Inverse PCA Transformation

full PCA without truncation (m = n):

x̃ = Aᵀy = AᵀA︸ ︷︷ ︸
I

x = x

truncated PCA (m < n):
1 method 1: x̃ = Aᵀy 6= x

2 method 2: x̃ = Aᵀy +
(
I−AᵀA

)
x̄ 6= x
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Linear Discriminant Analysis (I)

class labels are known

how to linearly project data in order to
maximize class separation

Fisher’s linear discriminant analysis (LDA)
aims to maximize the ratio:

ŵ = arg max
w

wᵀSbw

wᵀSww

◦ between-class scatter matrix
Sb =

∑K
k=1

∣∣Ck∣∣ (µk − µ
)(
µk − µ

)ᵀ
◦ within-class scatter matrix

Sw =
∑K
k=1 Sk

PCA does not always
maximize class
separation

Figure: LDA vs. PCA

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 4



Feature Extraction Linear Dimension Reduction Manifold Learning Neural Feature Extraction

Linear Discriminant Analysis (II)

Fisher’s LDA is equivalent to the
following constrained optimization:

w∗ = arg max
w

wᵀSbw

subject to

wᵀSww = 1

LDA projections correspond to the
eignenvectors of S−1

w Sb

LDA has at most K − 1 projection
directions

Figure: PCA vs. LDA projections
in 2-dimensional spaces
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Nonlinear Dimension Reduction (I): Manifold Learning

manifolds: nonlinear topological structures in a
lower-dimensional space

manifold learning: identify low-dimensional manifolds using
some non-parametric approaches
◦ locally linear embedding (LLE)
◦ multidimensional scaling (MDS)
◦ stochastic neighborhood embedding (SNE)
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Locally Linear Embedding (LLE)

assumption 1: a locally linear structure
in the high-D space xi ≈

∑
j∈Ni

wijxj

all pair-wise weights can be derived:{
ŵij
}

= arg min
{wij}

∑
i

∥∥xi−∑
j∈Ni

wijxj
∥∥2

subject to
∑
j wij = 1 (∀i)

assumption 2: the same locally linear
structure is applied to the low-D space{
ŷi
}

= arg min
{yi}

∑
i

∥∥yi −∑
j∈Ni

ŵijyj
∥∥2

closed-form solutions exist for LLE
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Multidimensional Scaling (MDS)

preserve all pair-wise distances when
projecting from high-D to low-D

all pair-wise distances in high-D:
dij = ‖xi − xj‖ (∀i, j)
MDS computes all low-D projections:

{
ŷi
}

= arg min
{yi}

∑
i

∑
j>i

(
‖yi − yj‖ − dij

dij

)2

isometric feature mapping (Isomap)

◦ only compute pairwise distances for
nearby vectors in high-D

◦ form a sparse graph in the high-D
space

Figure: Isomap uses the shortest
path in the weighted graph for
dij
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Stochastic Neighborhood Embedding (SNE)

define a conditional probability distribution in high-D:

pij =
exp
(
−γi‖xi−xj‖2

)
∑

k exp
(
−γi‖xi−xk‖2

) (∀i, j i 6= j)

similarly define a conditional probability distribution in low-D:

◦ SNE (stochastic neighbor embedding):

qij =
exp
(
−‖yi−yj‖2

)
∑

k exp
(
−‖yi−yk‖2

) (∀i, j)

◦ t-SNE (t-distributed stochastic neighbor embedding):

qij =

(
1+‖yi−yj‖2

)−1

∑
k 6=i

(
1+‖yi−yk‖2

)−1 (∀i, j)

low-D projections are derived by{
ŷi
}

= arg min
{yi}

∑
i

KL
(
Pi ||Qi

)
= arg min

{yi}

∑
i

∑
j

pij ln
pij
qij
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Nonlinear Dimension Reduction (II): Neural Networks

use neural networks as parametric models for
the nonlinear mapping function y = f(x) in
dimensionality reduction

autoencoder
◦ unsupervised: does not require class labels

◦ nonlinear extension of PCA

bottleneck features
◦ supervised: requires class labels

◦ nonlinear extension of LDA
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Autoencoder

neural networks are learned to minimize the difference between
inputs and outputs: ‖x̂− x‖2
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Bottleneck Features

neural networks are learned to project inputs x to any given class
labels
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