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Formulation of Discriminative Models

ML model
x y

input x is an n-dimensional vector from input space X, e.g.

◦ X = Rn for unconstrained inputs
◦ X = [0, 1]n for constrained inputs

output y from an output space Y:

◦ Y is finite for classification
◦ Y is continuous for regression, e.g. Y = R.

formulation of discriminative models
◦ inputs x are random vectors: x ∼ p(x) (∀x ∈ X)
◦ ∀x ∈ X, the corresponding output y is generated by an

unknown deterministic target function function, i.e. y = f̄(x)
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Statistical Learning Theory: Discriminative Models (I)

the goal of discriminative modeling is to learn the unknown
target function from a pre-specified model space H

based on a training set of a finite number of samples:

DN =
{

(xi, yi)
∣∣ i = 1, · · · , N

}
where xi is an independent sample drawn from the distribution
p(x), i.e. xi ∼ p(x), and yi = f̄(xi) for all i = 1, 2, · · · , N .

we can only learn a model y = f(x) from H, i.e. f(·) ∈ H,
which resembles the target function f̄(x) as much as possible
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Statistical Learning Theory: Discriminative Models (II)

introduce a loss function l(y, y′) to measure the learning error

◦ zero-one loss for classification: l(y, y′) =

{
0 (y = y′)
1 (y 6= y′)

◦ squared error for regression: l(y, y′) = (y − y′)2

empirical loss (a.k.a. in-sample error) of any f(·) ∈ H:

Remp(f |DN ) =
1

N

N∑
i=1

l
(
yi, f(xi)

)
expected loss (a.k.a. generalization error) of f(·) ∈ H:

R(f) = Ex∼p(x)

[
l
(
f̄(x), f(x)

)]
=

∫
x∈X

l
(
f̄(x), f(x)

)
p(x) dx

R(f) 6= Remp(f |DN ) but limN→∞Remp(f |DN ) = R(f)
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Statistical Learning Theory: Learnability

empirical risk minimization (ERM) aims to minimize the
empirical loss in H:

f∗ = arg min
f∈H

Remp(f |DN )

the problem is learnable or not:

◦ whether ERM can lead to a small generalization error, i.e.,
R(f∗) is sufficiently small

learnability depends on the following gap:∣∣∣R(f∗)−Remp(f∗|DN )
∣∣∣

the key to learnability: H must be chosen properly.
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Error Bounds in Machine Learning

assume f̄ is the unknown target function

assume f∗ is the optimal ERM solution, i.e.
f∗ = arg minf∈H Remp(f |DN )

assume f̂ denotes the best possible model in H, i.e.
f̂ = arg minf∈H R(f)
we can define several types of errors in machine learning:
◦ generalization error:

Eg =
∣∣R(f∗)−Remp(f

∗|DN )
∣∣ ≤ Bg(N,H)

◦ estimation error Ee:

Ee =
∣∣R(f∗)−R(f̂)

∣∣ ≤ Be(N,H)

◦ approximation error Ea:

Ea =
∣∣R(f̂)−R(f̄)

∣∣ = R(f̂) ≤ Ba(N,H)
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Generalization Bounds: Hoeffding’s inequality:

Given {x1, x2, · · · , xN} are N i.i.d. samples of a random variable
X whose distribution function is given as p(x), and a ≤ xi ≤ b for
every i, ∀ε > 0, we have

the weak law of large numbers:

lim
N→∞

Pr

[∣∣∣E[X ]− 1

N

N∑
i=1

xi

∣∣∣ > ε

]
= 0

Hoeffding’s inequality (one of concentration inequalities):

Pr

[ ∣∣∣E[X ]− 1

N

N∑
i=1

xi

∣∣∣ > ε

]
≤ 2 e

− 2Nε2

(b−a)2
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Generalization Bounds: Bg(N,H)

for a fixed model f (assuming the zero-one loss function):

Pr

[∣∣∣R(f)−Remp(f |DN )
∣∣∣ > ε

]
≤ 2e−2Nε

2

the above inequality does not apply to f∗ since it depends on
DN : DN → f∗

how to extend to any model f ∈ H?

consider the uniform deviation:

Bg(N,H) = sup
f∈H

∣∣R(f)−Remp(f |DN )
∣∣

As f∗ ∈ H, we have
∣∣R(f∗)−Remp(f∗|DN )

∣∣ ≤ Bg(N,H)
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Finite Model Space: |H|

finite model space H consists of |H| distinct models, ∀ε > 0

Bg(N,H) > ε ⇐⇒


|R(f1)−Remp(f1|DN )| > ε or
|R(f2)−Remp(f2|DN )| > ε or

...
|R(f|H|)−Remp(f|H||DN )| > ε

union bound:
Pr
(⋃

i

Ai
)
≤
∑
i

Pr(Ai)

=⇒ Pr
(
Bg(N,H) > ε

)
≤ 2|H|e−2Nε2

=⇒ Pr
(
Bg(N,H) ≤ ε

)
≥ 1− 2|H|e−2Nε2
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Generalization Bounds for Finite Model Space

denote δ = 2|H|e−2Nε2 , implying ε =

√
ln |H|+ln 2

δ
2N

equivalently, we can say

Bg(N,H) ≤

√
ln |H|+ ln 2

δ

2N

holds at least in probability 1− δ (∀δ ∈ (0, 1]).
As f∗ ∈ H, we have

∣∣R(f∗)−Remp(f∗|DN )
∣∣ ≤ Bg(N,H).

the first generalization bound:

R(f∗) ≤ Remp(f∗|DN ) +

√
ln |H|+ ln 2

δ

2N

holds at least in probability 1− δ.

Bg(N,H) ∼ O
(√

ln |H|
N

)
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Infinite Model Space

what about an infinite model space H?

given a finite number of samples, not
every model makes difference in terms
of separating these samples

the number of effective models

VC dimension is introduced to count
the total number of effective models in
an infinite model space H

Figure: a 2-D linear model
space, where all models
within each shaded area
separate these samples in the
same way

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 5



Discriminative Models Learnability Generalization Bounds

VC Dimension

VC dimension is defined based on the
concept of shattering a data set

a data set is shattered by H iff there exists at
least a model in H to generate every possible
label combination of all data samples

VC dimension of H: the maximum number of
samples that can be shattered by H
VC dimension of H is H =⇒
◦ H can shatter at least one set of H points

(no need to shatter all sets of H points)
◦ H cannot any set of H + 1 points

VC dimension of linear models in Rn is n+ 1

Figure: A set of 3 data
points are shattered by
H, consisting of all 2-D
linear models
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Generalization Bounds for Infinite Model Space

if VC dimension of H is H, Vapnik-Chervonenkis (VC) theory
suggests the total number of effective models in H for a set of
N points is upper-bounded by{

= 2N if N < H

≤
(
eN
H

)H
if N ≥ H.

the VC generalization bound for infinite model space H:

R(f∗) ≤ Remp(f∗|DN ) +

√
8H(ln 2N

H + 1) + 8 ln 4
δ

N

holds in probability 1− δ for any large data set (N ≥ H).

Bg(N,H) ∼ O
(√

H
N

)
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An Example of VC Bounds

1 use N = 1000 data samples (input dimension is 100) to learn
a linear classifier (H = 101), the training error rate is 1% and
the test error rate is 2.4%, set δ = 0.001

R(f∗) ≤ 0.01 + 1.8123 = 182.23% (� 2.4%)

2 same as above except N = 10000, the test error rate is 1.1%.

R(f∗) ≤ 0.01 + 0.7174 = 72.74% (� 1.1%)

3 same as above except input dimension is 1000 (H = 1001),
the test error rate is 3.8%.

R(f∗) ≤ 0.01 + 3.690 = 370.0% (� 3.8%)

caveat: VC bounds are extremely loose
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