Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines

Chapter 6 Linear Models

supplementary slides to Machine Learning Fundamentals [©]Hui Jiang 2020 published by Cambridge University Press

August 2020

supplementary slides to Machine Learning Fundamentals [©]Hui Jiang 2020 published by Cambridge University Press

Perceptron 000	Linear Regression 00	Minimum Classification Error	Logistic Regression 00	Support Vector Machines

Outline

1 Perceptron

- 2 Linear Regression
- 3 Minimum Classification Error
- 4 Logistic Regression
- 5 Support Vector Machines

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines

Linear Models

- Inear models: $\mathbf{x} \in \mathbb{R}^d \longmapsto y \in \mathbb{R}$
 - \circ linear functions: $y = \mathbf{w}^\intercal \mathbf{x} \quad (\mathbf{w} \in \mathbb{R}^d)$
 - affine functions: $y = \mathbf{w}^\intercal \mathbf{x} + b$ $(\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R})$
- binary classification problems: D = {(x_i, y_i) | i = 1, 2, ... N} where x_i ∈ ℝ^d and binary label y_i ∈ {+1, -1}
 distinguish linearly separable vs. non-separable cases

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
•00				

Perceptron

Use a linear model for 2-class problems (Rosenblatt, 1957): $y = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \begin{cases} +1 & \text{if } \mathbf{w}^{\mathsf{T}}\mathbf{x} > 0 \\ -1 & \text{otherwise} \end{cases}$

Perceptron Algorithm

initialize
$$\mathbf{w}^{(0)} = 0$$
, $n = 0$

loop

randomly choose a sample (\mathbf{x}_i, y_i) in \mathcal{D} calculate the actual output $h_i = \operatorname{sign}(\mathbf{w}^{(n)^{\mathsf{T}}}\mathbf{x}_i)$ if upon a mistake: $h_i \neq y_i$ then $\mathbf{w}^{(n+1)} = \mathbf{w}^{(n)} + y_i \mathbf{x}_i$ n = n + 1else if no mistake is found then return $\mathbf{w}^{(n)}$ and terminate end if end loop

Linear Regression	Logistic Regression	Support vector machines
000 00		

Perceptron: Convergence

- assume training set *D* is *linearly separable*
- normalizing all input vectors in \mathcal{D} : $\|\mathbf{x}_i\| \le 1 \quad \forall i = \{1, 2, \cdots, N\}$
- separation margin (scaling $\|\hat{\mathbf{w}}\| = 1$):

$$\gamma = \min_{\mathbf{x}_i \in \mathcal{D}} \frac{|\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_i|}{\|\hat{\mathbf{w}}\|} = \min_{\mathbf{x}_i \in \mathcal{D}} |\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_i|$$

Theorem 1 (Convergence of Perceptron Algorithm)

If the perceptron algorithm is run on a linearly separable training set \mathcal{D} , the number of mistakes made is at most $1/\gamma^2$. In other words, the perceptron algorithm will terminate after at most $\lceil 1/\gamma^2 \rceil$ updates and return a hyperplane that perfectly separates \mathcal{D} .

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
000				

Perceptron: Proof Convergence

proof sketch:

$$\begin{array}{l} 1 \quad \text{margin definition: } |\hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x}_{i}| \geq \gamma \implies y_{i}\hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x}_{i} \geq \gamma \quad \left(\forall (\mathbf{x}_{i}, y_{i}) \in \mathcal{D}\right) \\ 2 \quad \text{record all } M \quad \text{mistakes: } \mathcal{M} = \{(\mathbf{x}^{(1)}, y^{(1)}), \cdots, (\mathbf{x}^{(M)}, y^{(M)})\}, \text{ then } \\ \sum_{n \in \mathcal{M}} y^{(n)} \hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x}^{(n)} \geq M \cdot \gamma \\ 3 \quad \text{use Cauchy-Schwarz ineq. and } \|\hat{\mathbf{w}}\| = 1: \\ \sum_{n \in \mathcal{M}} y^{(n)} \hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x}^{(n)} \leq \|\hat{\mathbf{w}}\| \cdot \left\|\sum_{n \in \mathcal{M}} y^{(n)}\mathbf{x}^{(n)}\right\| = \left\|\sum_{n \in \mathcal{M}} y^{(n)}\mathbf{x}^{(n)}\right\| \\ 4 \quad \left\|\sum_{n \in \mathcal{M}} y^{(n)}\mathbf{x}^{(n)}\right\| = \left\|\sum_{n \in \mathcal{M}} (\mathbf{w}^{(n+1)} - \mathbf{w}^{(n)})\right\| = \left\|\mathbf{w}^{(M+1)}\right\| = \\ \sqrt{\left\|\mathbf{w}^{(M+1)}\right\|^{2}} = \sqrt{\sum_{n \in \mathcal{M}} \left(\left\|\mathbf{w}^{(n+1)}\right\|^{2} - \left\|\mathbf{w}^{(n)}\right\|^{2}}\right) \\ 5 \quad \left\|\mathbf{w}^{(n+1)}\right\|^{2} - \left\|\mathbf{w}^{(n)}\right\|^{2} = \left\|\mathbf{w}^{(n)} + y^{(n)}\mathbf{x}^{(n)}\right\|^{2} - \left\|\mathbf{w}^{(n)}\right\|^{2} < \left\|\mathbf{x}^{(n)}\right\|^{2} \leq 1 \\ \left\|\mathbf{w}^{(n)}\right\|^{2} + 2y^{(n)}\mathbf{w}^{(n)^{\mathsf{T}}}\mathbf{x}^{(n)} + (y^{(n)})^{2}\left\|\mathbf{x}^{(n)}\right\|^{2} - \left\|\mathbf{w}^{(n)}\right\|^{2} < \left\|\mathbf{x}^{(n)}\right\|^{2} \leq 1 \\ 6 \quad M \cdot \gamma \leq \left\|\sum_{n \in \mathcal{M}} y^{(n)}\mathbf{x}^{(n)}\right\| < \sqrt{M} \implies M < (1/\gamma)^{2} \\ \end{array}$$

supplementary slides to $Machine \ Learning \ Fundamentals \ ^{\odot}$ Hui Jiang 2020 published by Cambridge University Press

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
	••			

Linear Regression (I)

- how about *linearly non-separable* cases?
- find a linear mapping $y = \mathbf{w}^{\mathsf{T}} \mathbf{x}$ to fit all data in \mathcal{D} :

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^{\mathsf{T}} \\ \mathbf{x}_2^{\mathsf{T}} \\ \vdots \\ \mathbf{x}_N^{\mathsf{T}} \end{bmatrix}_{N \times d} \qquad \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}_{N \times 1}$$

the least square error:

$$E(\mathbf{w}) = \sum_{i=1}^{N} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} - y_{i} \right)^{2} = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^{2}$$

linear regression:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} E(\mathbf{w})$$

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
	00			

Linear Regression (II)

compute the gradient:

$$\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

derive the closed-form solution by vanishing the gradient:

$$\mathbf{w}^* = \left(\mathbf{X}^\intercal \mathbf{X}
ight)^{-1} \mathbf{X}^\intercal \mathbf{y}$$

with $\mathbf{X}^{\intercal}\mathbf{X} \in \mathbb{R}^{d imes d}$

- may alternatively use gradient descent to derive w* iteratively to avoid the matrix inversion
- assign a new input x in the test stage:

$$y = \operatorname{sign}(\mathbf{w}^{*\mathsf{T}}\mathbf{x}) = \left\{ \begin{array}{l} +1 & \text{if } \mathbf{w}^{*\mathsf{T}}\mathbf{x} > 0 \\ -1 & \text{otherwise} \end{array} \right.$$

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
		••		

Minimum Classification Error (I)

- \blacksquare ERM minimizes 0-1 classification errors in ${\cal D}$
- for each training sample (\mathbf{x}_i, y_i) in \mathcal{D}

$$-y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i = \begin{cases} > 0 & \Longrightarrow \text{ mis-classification} \\ < 0 & \Longrightarrow \text{ correct classification} \end{cases}$$

count the 0-1 training errors:

$$E_0(\mathbf{w}) = \sum_{i=1}^N H(-y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i)$$

• smooth approximation by sigmoid l(x):

$$E_1(\mathbf{w}) = \sum_{i=1}^N l(-y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i)$$

	LITON LOgistic Regression	Support vector Machines
00		

Minimum Classification Error (II)

minimum classification error (MCE): learn w by minimizing the sum of smooth errors E₁(w)

$$\mathbf{w}_{\mathsf{MCE}} = \arg\min_{\mathbf{w}} E_1(\mathbf{w}) = \arg\min_{\mathbf{w}} \sum_{i=1}^N l(-y_i \mathbf{w}^\mathsf{T} \mathbf{x}_i)$$

- MCE does not have a closed-form solution
- rely on a gradient descent or SGD method:

$$\frac{\partial E_1(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^N y_i \, l(y_i \mathbf{w}^\mathsf{T} \mathbf{x}_i) \, \Big(1 - l(y_i \mathbf{w}^\mathsf{T} \mathbf{x}_i) \Big) \mathbf{x}_i$$

where $\frac{dl(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = l(x)(1-l(x))$

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
			•0	

Logistic Regression (I)

• for any (\mathbf{x}_i, y_i) in \mathcal{D} , the quantity $l(-y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i) \in (0, 1)$:

- MCE interprets it as a soft error to misclassify (\mathbf{x}_i, y_i)
- $\circ\,$ it can be viewed as a probability to misclassify (\mathbf{x}_i,y_i)
- the probability to correctly classify (\mathbf{x}_i, y_i) : $1 - l(-u_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i) = l(u_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i)$
- \blacksquare logistic regression learns ${\bf w}$ by maximizing the probability to correctly classify all samples in ${\cal D}$

$$\mathbf{w}_{LR} = \arg \max_{\mathbf{w}} L(\mathbf{w}) = \arg \max_{\mathbf{w}} \prod_{i=1}^{N} l(y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i)$$
$$= \arg \max_{\mathbf{w}} \ln L(\mathbf{w}) = \arg \max_{\mathbf{w}} \sum_{i=1}^{N} \ln l(y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i)$$

Perceptron Linear	Regression Minimum C	lassification Error Logis	tic Regression Support	Vector Machines
		00		

Logistic Regression (II)

rely on gradient descent or SGD:

$$\frac{\partial \ln L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^{N} y_i \Big(1 - l(y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i) \Big) \mathbf{x}_i$$

logistic regression vs. MCE

- MCE learning focuses more on the boundary cases
- logistic regression generates significant gradients for all mis-classified samples: prone to outliers but faster convergence
- can be extended to multi-class using the softmax function

Figure: Comparison of the gradient weights of MCE and logistic regression

Logistic Regression

Support Vector Machines

Support Vector Machines (SVMs)

- linear SVMs
- soft SVMs
- nonlinear SVMs
- solving quadratic programming
- multi-class SVMs

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
				0000000000000

Linear SVMs (1): SVM0

- \blacksquare assume the data $\mathcal D$ is linearly separable
- how to find the max-margin hyperplane?
- margin: $\gamma = \min_{\mathbf{x}_i \in \mathcal{D}_N} \frac{y_i(\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b)}{||\mathbf{w}||}$
- linear SVM \implies max margin hyperplane:

$$\{\mathbf{w}^*, b^*\} = \arg \max_{\mathbf{w}, b} \gamma$$

SVM0

 $\max_{\gamma, \mathbf{w}, b} \quad \gamma$

subject to

$$\frac{y_i(\mathbf{w}^{\intercal}\mathbf{x}_i+b)}{||\mathbf{w}||} \ge \gamma \quad \forall i \in \{1, 2, \cdots, N\}$$

Figure: max margin hyperplane

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

ion Minimum Classification Error Logistic Regression Support Vector Machin	es
00 000000000000000000000000000000000000	

Linear SVMs (2): SVM1

- scale \mathbf{w}, b to normalize numerators \implies margin $\gamma = \frac{1}{\|\mathbf{w}\|}$
- max margin $\max \gamma \iff \min \|\mathbf{w}\|^2$
- an equivalent formulation of linear SVMs:

SVM1

$$\min_{\mathbf{w},b} \quad \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

subject to

$$y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i+b) \ge 1 \quad \forall i \in \{1, 2, \cdots, N\}$$

Figure: scaling \mathbf{w}, b does not change the location of the hyperplane $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
				0000000000000

Linear SVMs (3): Lagrange Duality

• use the KKT conditions to derive the Lagrange duality 1 introduce Lagrange multipliers $\alpha_i \ge 0$ to derive the Lagrangian

$$L(\mathbf{w}, b, \{\alpha_i\}) = \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} + \sum_{i=1}^{N} \alpha_i \Big(1 - y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b)\Big)$$

2 the Lagrange dual function:

$$\begin{aligned} \mathcal{L}^*(\{\alpha_i\}) &= \inf_{\mathbf{w},b} \quad L(\mathbf{w},b,\{\alpha_i\}) \\ &= \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j \end{aligned}$$

3 subject to the constraint: $\sum_{i=1}^{N} \alpha_i y_i = 0$

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
				00000000000000

Linear SVMs (4): Dual Problem

■ linear SVMs are convex optimizatoin \implies strong duality ■ the unique solution, i.e. $(\mathbf{w}^*, b^*, \{\alpha_i^*\})$, is a saddle point

$$\underbrace{\mathsf{SVM1}}_{\mathsf{prime problem}} \iff \underbrace{\max_{\{\alpha_i\}} L^*(\alpha_i) \ \mathsf{s.t.} \sum_{i=1}^N \alpha_i y_i = 0}_{\mathsf{dual problem}}$$

solving the dual problem yields {\$\alpha_i^*\$}\$
linear SVMs: \$\mathbf{w}^* = \sum_{i=1}^N \alpha_i^* y_i \mathbf{x}_i\$ and \$b^* = y_i - \mathbf{w}^{*\intercal} \mathbf{x}_i\$

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

000 00 00 00 00 00 0000000	Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
					000000000000000000

Linear SVMs (5): SVM2

$$\boldsymbol{\alpha} = \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{N} \end{bmatrix}_{N \times 1} \mathbf{y} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{N} \end{bmatrix}_{N \times 1} \mathbf{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}_{N \times 1}$$
$$\mathbf{Q} = \begin{bmatrix} Q_{ij} \end{bmatrix}_{N \times N} = \begin{bmatrix} \mathbf{y} \mathbf{y}^{\mathsf{T}} \end{bmatrix}_{N \times N} \odot \begin{bmatrix} \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{1} & \cdots & \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{N} \\ \vdots & \mathbf{x}_{i}^{\mathsf{T}} \mathbf{x}_{j} & \vdots \\ \mathbf{x}_{N}^{\mathsf{T}} \mathbf{x}_{1} & \cdots & \mathbf{x}_{N}^{\mathsf{T}} \mathbf{x}_{N} \end{bmatrix}_{N \times N}$$

SVM2: Quadratic Programming

$$\max_{\boldsymbol{\alpha}} \ \mathbf{1}^{\mathsf{T}} \boldsymbol{\alpha} - \frac{1}{2} \boldsymbol{\alpha}^{\mathsf{T}} \mathbf{Q} \boldsymbol{\alpha}$$

subject to

$$\mathbf{y}^{\mathsf{T}} \boldsymbol{\alpha} = 0$$

 $\boldsymbol{\alpha} \ge 0$

200

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
				0000000000000

Soft SVMs

- how about linearly non-separable cases?
- allow non-negative error terms ξ
- soft SVMs: aim to minimize the soft margin

SVM3

$$\min_{\mathbf{w},b,\xi_i} \quad \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{i=1}^{N} \xi_i$$

subject to

$$y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \ge 1 - \xi_i \quad \forall i \in \{1, 2, \cdots, N\}$$
$$\xi_i \ge 0 \quad \forall i \in \{1, 2, \cdots, N\}$$

soft margin = margin + linear errors

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
				0000000000000

Soft SVMs: Dual Problem

- use the same technique of Lagrangian
- derive the Lagrange dual function

SVM4

subject to

$$\max_{\alpha} \mathbf{1}^{\mathsf{T}} \boldsymbol{\alpha} - \frac{1}{2} \boldsymbol{\alpha}^{\mathsf{T}} \mathbf{Q} \boldsymbol{\alpha}$$
$$\mathbf{y}^{\mathsf{T}} \boldsymbol{\alpha} = 0$$
$$0 \le \boldsymbol{\alpha} \le C$$

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

< (T) >

-

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
				00000000000000

Nonlinear SVMs

- apply a mapping function to a higher dimensional feature space: $\mathbf{x} \longmapsto h(\mathbf{x})$
- construct linear SVMs in the feature space
- linear SVMs only depend on $h^{\intercal}(\mathbf{x}_i)h(\mathbf{x}_j)$
- define the so-called kernel function $\Phi(\mathbf{x}_i, \mathbf{x}_j) = h^{\mathsf{T}}(\mathbf{x}_i)h(\mathbf{x}_j)$
- choose any kernel function based on the Mercer's condition
 - $\circ~$ polynomial kernel: $\Phi(\mathbf{x}_i,\mathbf{x}_j) = (\mathbf{x}_i^\mathsf{T}\mathbf{x}_j+1)^p$
 - Gaussian (or RBF) kernel: $\Phi(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2)$

$$h(\mathbf{x})$$
 vs. $\Phi(\mathbf{x}_i, \mathbf{x}_j)$
 $\circ h(\mathbf{x}): \mathbb{R}^m \to \mathbb{R}^n$

•
$$\Phi(\mathbf{x}_i, \mathbf{x}_j)$$
:
 $\mathbb{R}^m + \mathbb{R}^m \to \mathbb{R}$

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
				00000000000000

Nonlinear SVMs: Kernel Trick

nonlinear SVMs: also solve SVM4 but using

$$\mathbf{Q} = \begin{bmatrix} Q_{ij} \end{bmatrix}_{N \times N} = \begin{bmatrix} \mathbf{y} \mathbf{y}^{\mathsf{T}} \end{bmatrix} \odot \begin{bmatrix} \Phi(\mathbf{x}_1, \mathbf{x}_1) & \cdots & \Phi(\mathbf{x}_1, \mathbf{x}_N) \\ \vdots & \Phi(\mathbf{x}_i, \mathbf{x}_j) & \vdots \\ \Phi(\mathbf{x}_N, \mathbf{x}_1) & \cdots & \Phi(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix}$$

construct the nonlinear SVM:

$$y = \operatorname{sign} \Big(\sum_{i=1}^{N} \alpha_i^* y_i \Phi(\mathbf{x}_i, \mathbf{x}) + b^* \Big)$$

 nonlinear SVMs are very powerful machine learning models

o e.g. a proper RBF kernel is used

kernel tricks in machine learning

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
				000000000000000

Solving Quadratic Programming in SVMs

Dual problem of all SVMs is a dense quadratic programming:

$$\min_{\boldsymbol{\alpha}} \quad \underbrace{\frac{1}{2} \boldsymbol{\alpha}^{\mathsf{T}} \mathbf{Q} \boldsymbol{\alpha} - \mathbf{1}^{\mathsf{T}} \boldsymbol{\alpha}}_{L(\boldsymbol{\alpha})}$$

subject to $\mathbf{y}^{\intercal} \boldsymbol{\alpha} = 0$ and $0 \leq \boldsymbol{\alpha} \leq C$, where

$$\boldsymbol{\alpha} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_T \end{bmatrix}_{T \times 1} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_T \end{bmatrix}_{T \times 1} \quad \mathbf{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}_{T \times 1}$$
$$\mathbf{Q} = \begin{bmatrix} Q_{ij} \end{bmatrix}_{T \times T} = \begin{bmatrix} \mathbf{y} \mathbf{y}^\mathsf{T} \end{bmatrix}_{T \times T} \odot \begin{bmatrix} \Phi(\mathbf{x}_i, \mathbf{x}_j) \end{bmatrix}_{T \times T}$$

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
				000000000000000000000000000000000000000

Projected Gradient Descent for SVMs

Projected Gradient Descent Algorithm

initialize $\alpha^{(0)} = 0$, and set n = 0while not converged **do**

- (1) compute the gradient: $\nabla L(\boldsymbol{\alpha}^{(n)}) = \mathbf{Q}\boldsymbol{\alpha}^{(n)} \mathbf{1}$
- (2) project the gradient to the hyperplane $y^{\mathsf{T}} \alpha = 0$:

$$\tilde{\nabla}L(\boldsymbol{\alpha}^{(n)}) = \nabla L(\boldsymbol{\alpha}^{(n)}) - \frac{\mathbf{y}^{\mathsf{T}} \nabla L(\boldsymbol{\alpha}^{(n)})}{||\mathbf{y}||^2} \mathbf{y}$$

(3) projected gradient descent: $\alpha^{(n+1)} = \alpha^{(n)} - \eta_n \cdot \tilde{\nabla} L(\alpha^{(n)})$ (4) limit $\alpha^{(n+1)}$ to [0, C](5) n = n + 1end while

- projected gradient descent: intuitive but inefficient in memory use
- e.g. sequential minimization optimization (SMO) method

Perceptron	Linear Regression	Minimum Classification Error	Logistic Regression	Support Vector Machines
				0000000000000000

Multi-Class SVM

- SVMs are good for binary classification problems
- how about multi-class problems?
- build multiple binary SVMs:
 - one-vs-one strategy: a binary SVM to separate each pair of classes
 - one-vs-all strategy: a binary SVM to separate each class from all others
 - use majority-voting in the test stage
- directly formulate multi-class SVMs

Perceptron 000	Linear Regression 00	Minimum Classification Error	Logistic Regression 00	Support Vector Machines

SVM Summary

SVM Learning Procedure (in a nutshell)

Given a training set as $\mathcal{D} = \left\{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N) \right\}$

- 1. choose a kernel function $\Phi(\mathbf{x}_i, \mathbf{x}_j)$
- 2. build the matrices \mathbf{Q} , \mathbf{y} and $\mathbf{1}$ from \mathcal{D} and $\Phi(\mathbf{x}_i, \mathbf{x}_j)$
- 3. solve the quadratic programming problem to get:

$$\pmb{lpha}^* = [\alpha_1^*, \cdots \alpha_N^*]^{\mathsf{T}}$$
 and b^*

4. evaluate the learned model as:

$$y = \operatorname{sign}\left(\sum_{i=1}^{N} \alpha_i^* y_i \Phi(\mathbf{x}_i, \mathbf{x}) + b^*\right)$$