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Linear Models

linear models: x ∈ Rd 7−→ y ∈ R
◦ linear functions: y = wᵀx (w ∈ Rd)
◦ affine functions: y = wᵀx + b (w ∈ Rd, b ∈ R)

binary classification problems: D =
{

(xi, yi) | i = 1, 2, · · ·N
}

where xi ∈ Rd and binary label yi ∈ {+1,−1}
distinguish linearly separable vs. non-separable cases

(a) linearly separable (b) linearly nonseparable
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Perceptron

Use a linear model for 2-class problems (Rosenblatt, 1957):

y = sign(wᵀx) =

{
+1 if wᵀx > 0
−1 otherwise

Perceptron Algorithm

initialize w(0) = 0 , n = 0
loop

randomly choose a sample (xi, yi) in D
calculate the actual output hi = sign(w(n)ᵀxi)
if upon a mistake: hi 6= yi then

w(n+1) = w(n) + yixi

n = n+ 1
else if no mistake is found then

return w(n) and terminate
end if

end loop
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Perceptron: Convergence

assume training set D is linearly separable

normalizing all input vectors in D:
‖xi‖ ≤ 1 ∀i = {1, 2, · · · , N}
separation margin (scaling ‖ŵ‖ = 1):

γ = min
xi∈D

|ŵᵀxi|
‖ŵ‖

= min
xi∈D

|ŵᵀxi|

Theorem 1 (Convergence of Perceptron Algorithm)

If the perceptron algorithm is run on a linearly separable training set D,
the number of mistakes made is at most 1/γ2. In other words, the
perceptron algorithm will terminate after at most d1/γ2e updates and
return a hyperplane that perfectly separates D.
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Perceptron: Proof Convergence

proof sketch:

1 margin definition: |ŵᵀxi| ≥ γ =⇒ yiŵ
ᵀxi ≥ γ

(
∀(xi, yi) ∈ D

)
2 record all M mistakes: M = {(x(1), y(1)), · · · , (x(M), y(M))}, then∑

n∈M y(n)ŵᵀx(n) ≥M · γ
3 use Cauchy–Schwarz ineq. and ‖ŵ‖ = 1:∑

n∈M y(n)ŵᵀx(n) ≤ ‖ŵ‖ ·
∥∥∥∑n∈M y(n)x(n)

∥∥∥ =
∥∥∥∑n∈M y(n)x(n)

∥∥∥
4

∥∥∥∑n∈M y(n)x(n)
∥∥∥ =

∥∥∥∑n∈M
(
w(n+1) −w(n)

)∥∥∥ =
∥∥∥w(M+1)

∥∥∥ =√
‖w(M+1)‖2 =

√∑
n∈M

(
‖w(n+1)‖2 − ‖w(n)‖2

)
5 ‖w(n+1)‖2 − ‖w(n)‖2 = ‖w(n) + y(n)x(n)‖2 − ‖w(n)‖2 =

��
��‖w(n)‖2 +

<0︷ ︸︸ ︷
2y(n)w(n)ᵀx(n) +���

�: (±1)2

(y(n))2‖x(n)‖2 −����‖w(n)‖2 < ‖x(n)‖2 ≤ 1

6 M · γ ≤
∥∥∥∑n∈M y(n)x(n)

∥∥∥ < √M =⇒ M < (1/γ)2 �
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Linear Regression (I)

how about linearly non-separable cases?
find a linear mapping y = wᵀx to fit all data in D:

X =


xᵀ1
xᵀ2
...

xᵀN


N×d

7−→ y =


y1
y2
...
yN


N×1

the least square error:

E(w) =

N∑
i=1

(
wᵀxi − yi

)2
= ‖Xw − y‖2

linear regression:

w∗ = arg min
w

E(w)
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Linear Regression (II)

compute the gradient:

∂E(w)

∂w
= 2XᵀXw − 2Xᵀy

derive the closed-form solution by vanishing the gradient:

w∗ =
(
XᵀX

)−1
Xᵀy

with XᵀX ∈ Rd×d
may alternatively use gradient descent to derive w∗ iteratively
to avoid the matrix inversion

assign a new input x in the test stage:

y = sign(w∗ᵀx) =

{
+1 if w∗ᵀx > 0
−1 otherwise
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Minimum Classification Error (I)

ERM minimizes 0-1 classification errors in D

for each training sample (xi, yi) in D

−yiwᵀxi =

{
> 0 =⇒ mis-classification
< 0 =⇒ correct classification

count the 0-1 training errors:

E0(w) =

N∑
i=1

H(−yiwᵀxi)

smooth approximation by sigmoid l(x):

E1(w) =
N∑
i=1

l(−yiwᵀxi)

l(x) =
1

1 + e−x
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Minimum Classification Error (II)

minimum classification error (MCE): learn w by minimizing
the sum of smooth errors E1(w)

wMCE = arg min
w

E1(w) = arg min
w

N∑
i=1

l(−yiwᵀxi)

MCE does not have a closed-form solution

rely on a gradient descent or SGD method:

∂E1(w)

∂w
=

N∑
i=1

yi l(yiw
ᵀxi)

(
1− l(yiwᵀxi)

)
xi

where dl(x)
dx = e−x

(1+e−x)2
= l(x)

(
1− l(x)

)
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Logistic Regression (I)

for any (xi, yi) in D, the quantity l(−yiwᵀxi) ∈ (0, 1):
◦ MCE interprets it as a soft error to misclassify (xi, yi)
◦ it can be viewed as a probability to misclassify (xi, yi)
◦ the probability to correctly classify (xi, yi):

1− l(−yiwᵀxi) = l(yiw
ᵀxi)

logistic regression learns w by maximizing the probability to
correctly classify all samples in D

wLR = arg max
w

L(w) = arg max
w

N∏
i=1

l(yiw
ᵀxi)

= arg max
w

lnL(w) = arg max
w

N∑
i=1

ln l(yiw
ᵀxi)
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Logistic Regression (II)

rely on gradient descent or SGD:

∂ lnL(w)

∂w
=

N∑
i=1

yi

(
1− l(yiwᵀxi)

)
xi

logistic regression vs. MCE

◦ MCE learning focuses more on the
boundary cases

◦ logistic regression generates significant
gradients for all mis-classified samples:
prone to outliers but faster convergence

can be extended to multi-class using the
softmax function

Figure: Comparison of the
gradient weights of MCE and
logistic regression
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Support Vector Machines (SVMs)

linear SVMs

soft SVMs

nonlinear SVMs

solving quadratic programming

multi-class SVMs
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Linear SVMs (1): SVM0

assume the data D is linearly separable

how to find the max-margin hyperplane?

margin: γ = minxi∈DN

yi(w
ᵀxi+b)
||w||

linear SVM =⇒ max margin hyperplane:

{w∗, b∗} = arg maxw,b γ

SVM0

maxγ,w,b γ

subject to

yi(w
ᵀxi+b)
||w|| ≥ γ ∀i ∈ {1, 2, · · · , N}

Figure: max margin hyperplane

d = |wᵀx0+b|
‖w‖
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Linear SVMs (2): SVM1

scale w, b to normalize numerators =⇒
margin γ = 1

‖w‖

max margin max γ ⇐⇒ min ‖w‖2

an equivalent formulation of linear SVMs:

SVM1

min
w,b

1

2
wᵀw

subject to

yi(w
ᵀxi + b) ≥ 1 ∀i ∈ {1, 2, · · · , N}

Figure: scaling w, b does not
change the location of the
hyperplane wᵀx + b = 0
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Linear SVMs (3): Lagrange Duality

use the KKT conditions to derive the Lagrange duality

1 introduce Lagrange multipliers αi ≥ 0 to derive the Lagrangian

L
(
w, b, {αi}

)
=

1

2
wᵀw +

N∑
i=1

αi

(
1− yi(wᵀxi + b)

)
2 the Lagrange dual function:

L∗({αi}) = inf
w,b

L
(
w, b, {αi}

)
=

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
ᵀ
i xj

3 subject to the constraint:
∑N
i=1 αiyi = 0
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Linear SVMs (4): Dual Problem

linear SVMs are convex optimizatoin =⇒ strong duality

the unique solution, i.e. (w∗, b∗, {α∗i }
)
, is a saddle point

SVM1︸ ︷︷ ︸
prime problem

⇐⇒ max
{αi}

L∗
(
αi
)

s.t.
N∑
i=1

αiyi = 0︸ ︷︷ ︸
dual problem

solving the dual problem yields {α∗i }
linear SVMs: w∗ =

∑N
i=1 α

∗
i yixi and b∗ = yi −w∗ᵀxi
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Linear SVMs (5): SVM2

α =

α1

...
αN


N×1

y =

 y1...
yN


N×1

1 =

1
...
1


N×1

Q =

[
Qij

]
N×N

=

[
yyᵀ

]
N×N

�

x
ᵀ
1x1 · · · xᵀ

1xN

... xᵀ
i xj

...
xᵀ
Nx1 · · · xᵀ

NxN


N×N

SVM2: Quadratic Programming

max
α

1ᵀα− 1

2
αᵀQα

subject to
yᵀα = 0

α ≥ 0
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Soft SVMs

how about linearly non-separable cases?

allow non-negative error terms ξ

soft SVMs: aim to minimize the soft margin

SVM3

min
w,b,ξi

1

2
wᵀw + C

N∑
i=1

ξi

subject to

yi(w
ᵀxi + b) ≥ 1− ξi ∀i ∈ {1, 2, · · · , N}

ξi ≥ 0 ∀i ∈ {1, 2, · · · , N}

soft margin =
margin + linear errors
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Soft SVMs: Dual Problem

use the same technique of Lagrangian

derive the Lagrange dual function

SVM4

max
α

1ᵀα− 1

2
αᵀQα

subject to
yᵀα = 0

0 ≤ α≤ C
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Nonlinear SVMs

apply a mapping function to a higher
dimensional feature space: x 7−→ h(x)

construct linear SVMs in the feature space

linear SVMs only depend on hᵀ(xi)h(xj)

define the so-called kernel function
Φ(xi, xj) = hᵀ(xi)h(xj)

choose any kernel function based on the
Mercer’s condition

◦ polynomial kernel:
Φ(xi, xj) = (xᵀi xj + 1)p

◦ Gaussian (or RBF) kernel:
Φ(xi, xj) = exp(−γ‖xi − xj‖2)

h(x) vs. Φ(xi, xj)

◦ h(x): Rm → Rn

◦ Φ(xi, xj):
Rm + Rm → R
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Nonlinear SVMs: Kernel Trick

nonlinear SVMs: also solve SVM4 but using

Q =

[
Qij

]
N×N

=

[
yyᵀ

]
�

Φ(x1, x1) · · · Φ(x1, xN )
... Φ(xi, xj)

...
Φ(xN , x1) · · · Φ(xN , xN )


construct the nonlinear SVM:

y = sign
( N∑
i=1

α∗i yiΦ(xi, x) + b∗
)

nonlinear SVMs are very powerful
machine learning models

◦ e.g. a proper RBF kernel is used

kernel tricks in machine learning
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Solving Quadratic Programming in SVMs

Dual problem of all SVMs is a dense quadratic programming:

min
α

L(α)︷ ︸︸ ︷
1

2
αᵀQα− 1ᵀα

subject to yᵀα = 0 and 0 ≤ α ≤ C, where

α =

α1

...
αT


T×1

y =

y1...
yT


T×1

1 =

1
...
1


T×1

Q =

[
Qij

]
T×T

=

[
yyᵀ

]
T×T

�

[
Φ(xi,xj)

]
T×T
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Projected Gradient Descent for SVMs

Projected Gradient Descent Algorithm

initialize α(0) = 0, and set n = 0
while not converged do

(1) compute the gradient: ∇L(α(n)) = Qα(n) − 1
(2) project the gradient to the hyperplane yᵀα = 0:

∇̃L(α(n)) = ∇L(α(n))− yᵀ∇L(α(n))

||y||2 y

(3) projected gradient descent: α(n+1) = α(n) − ηn · ∇̃L(α(n))
(4) limit α(n+1) to [0, C]
(5) n = n+ 1

end while

projected gradient descent: intuitive but inefficient in memory use

e.g. sequential minimization optimization (SMO) method
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Multi-Class SVM

SVMs are good for binary classification problems

how about multi-class problems?

build multiple binary SVMs:

◦ one-vs-one strategy: a binary SVM to separate each pair of
classes

◦ one-vs-all strategy: a binary SVM to separate each class from
all others

◦ use majority-voting in the test stage

directly formulate multi-class SVMs
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SVM Summary

SVM Learning Procedure (in a nutshell)

Given a training set as D =
{

(x1, y1), (x2, y2), · · · , (xN , yN )
}

1. choose a kernel function Φ(xi,xj)

2. build the matrices Q, y and 1 from D and Φ(xi,xj)

3. solve the quadratic programming problem to get:

α∗ = [α∗1, · · ·α∗N ]ᵀ and b∗

4. evaluate the learned model as:

y = sign
(∑N

i=1 α
∗
i yiΦ(xi, x) + b∗

)
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