Chapter 6
Linear Models

supplementary slides to
Machine Learning Fundamentals
©Hui Jiang 2020
published by Cambridge University Press

August 2020

53 CAMBRIDGE

UNIVERSITY PRESS

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 6

Outline

Perceptron

Linear Regression

Minimum Classification Error
Logistic Regression

Support Vector Machines

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 6

Linear Models

m linear models: x e R? — yeR
o linear functions: y = wTx (w € R?)
o affine functions: y = wTx+b (w € R4 beR)

m binary classification problems: D = {(xi,yi) li=1,2,- ~-N}

where x; € R? and binary label y; € {+1, 1}
m distinguish linearly separable vs. non-separable cases

@ A =] A
A A A
® = = 2 : o = = 2
A A
=] A =}
=] @ =]
= A A =] A A
= =] (=] =]
Label: +1 Label: -1 Label: +1 Label: -1
(a) linearly separable (b) linearly nonseparable

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 6

Perceptron
©00

Perceptron

Use a linear model for 2-class problems (Rosenblatt, 1957):

. ; +1 ifwix>0
y =sign(wTx) = —1 otherwise

Perceptron Algorithm

initialize w® =0, n =0
loop
randomly choose a sample (x;,y;) in D
calculate the actual output h; = sign(w(")Txi)
if upon a mistake: h; # y; then
WD = ™ oy,
n=n+1
else if no mistake is found then
return w(™ and terminate
end if
end loop

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 6

Perceptron
o] 1o}

Perceptron: Convergence

m assume training set D is linearly separable

m normalizing all input vectors in D:
x| <1 Vi={1,2,--- ,N}

m separation margin (scaling ||[w| = 1): .
x| o ”
v = min ——— = min |WTx;]
x, €D HWH x, €D

Theorem 1 (Convergence of Perceptron Algorithm)

If the perceptron algorithm is run on a linearly separable training set D,
the number of mistakes made is at most 1/v2. In other words, the
perceptron algorithm will terminate after at most [1/4?] updates and
return a hyperplane that perfectly separates D.

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 6

Perceptron
ooe

Perceptron: Proof Convergence

proof sketch:
margin definition: |[WTx;| > v = y;WwTx; > v (V(Xi,yi) S D)

record all M mistakes: M = {(xM,y®)) ... (x*) (M)} then
e yMwTx™ > M.y
use Cauchy—Schwarz ineq. and ||W| = 1:

e YT <]| - HEneMy <™ = HZ y(Mx ()
HzneM yWx™| = HZHEM (W) — w(m) H _ HW<M+1>
WD =[5 e (I — [)
[w D2 — (w12 = [fw) 4 yx)2 — lw ™2 =
<0

f__ (
I 1 2y T e o < 2 < 1

6] M-vSHZnEMy x(") <VM = M < (1/7)?]

supplementary slides to Machine Learning Fundamentals ©

Chapter 6

i Jiang 2020 published by Cambridge University Press

Linear Regression
°0

Linear Regression (1)

m how about /linearly non-separable cases?
m find a linear mapping y = wTx to fit all data in D:

Xy Y1
X} Y2

T
XN] Nxd YN1 Nx1

m the least square error:
al 2
2
Bw) =Y (wxi—yi) = [Xw—y]
i=1

m linear regression:

w* = argmin E(w)
w

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 6

Linear Regression
oe

Linear Regression (I1)

m compute the gradient:

M = 2XTXw — 2XTy
ow

m derive the closed-form solution by vanishing the gradient:
-1
w* = (XTX) XTy

with XTX € R?xd

m may alternatively use gradient descent to derive w* iteratively
to avoid the matrix inversion

B assign a new input X in the test stage:

. T +1 ifw*Tx >0
y = sign(w*Tx) =

—1 otherwise

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 6

Minimum Classification Error
[Je]

Minimum Classification Error (1)

m ERM minimizes 0-1 classification errors in D

H(x)
m for each training sample (x;,y;) in D 0‘;
0.6
1o) >0 = mis-classification 0.4
TYWIX = { <0 == correct classification 0.2
-1 -0.5 0.5 i~

m count the 0-1 training errors:

Eo(w) = Z H(—y:iw'x;)

B smooth approximation by sigmoid I(z): 1
(z) = ———
N () 1 +e 7T
Ei(w) =Y l(—ywTx;)
i=1

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 6

Minimum Classification Error
oe

Minimum Classification Error (I1)

m minimum classification error (MCE): learn w by minimizing
the sum of smooth errors E;(w)

N
Wyce = argmin Ej(w) = arg min Zl(—inTxi)
m MCE does not have a closed-form solution

m rely on a gradient descent or SGD method:

8E1(W)_N. — W))x
W = ;yll(ylw Xz) (1 - l(yzw Xz))xz

where 242) -

i = ey =)1 - U(2))

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 6

Logistic Regression
®0

Logistic Regression (I)

m for any (x;,y;) in D, the quantity I(—y;wTx;) € (0,1):
o MCE interprets it as a soft error to misclassify (x;,y;)
o it can be viewed as a probability to misclassify (x;,y;)
o the probability to correctly classify (x;,y;):
L= (~yiwTx;) = l(yiwTx;)
m logistic regression learns w by maximizing the probability to
correctly classify all samples in D

N
wir = argmax L(w)=argmax Hl(yinxi)

N
= argmax InL(w) = argmax Zlnl(yinxi)
w w

i=1

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 6

Logistic Regression
oe

Logistic Regression (I1)
m rely on gradient descent or SGD:

OlnL(w) _ iyz(l — l(inTXi))Xi

ow
i=1

m logistic regression vs. MCE
o MCE learning focuses more on the
boundary cases
o logistic regression generates significant
gradients for all mis-classified samples:
prone to outliers but faster convergence

m can be extended to multi-class using the
softmax function

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020

—MCE
— Logistic Regression

1-1(z)

I(2)(1 - 1(),

z

Figure: Comparison of the
gradient weights of MCE and
logistic regression

published by Cambridge University Press

Chapter 6

Support Vector Machines
©0000000000000

Support Vector Machines (SVMs)

m linear SVMs
m soft SVMs
m nonlinear SVMs

solving quadratic programming

m multi-class SVMs

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 6

Support Vector Machines
0®000000000000

Linear SVMs (1): SVMO

assume the data D is linearly separable

how to find the max-margin hyperplane?

vy (WTx;+b)
[[wl|

linear SVM = max margin hyperplane: .

margin: v = miny,epy

{w*,b*} = argmaxy ; v
SVMO

ma‘x"/yw7b v Xo wix+b=0

Figure: max margin hyperplane

subject to a*.

Yi(WTxi+b) >y Vie{1,2,---,N}

_ [wTxo+b]
[[w] d= .

[Fwl

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 6

Support Vector Machines
00®00000000000

Linear SVMs (2): SVM1

m scale w, b to normalize numerators —-
S |
margin vy = m

® max margin maxy <= min|w|?

m an equivalent formulation of linear SVMs:

SVM1

w,b
bi Figure: scaling w, b does not
subject to change the location of the
hyperplane wTx +b =10
yi(wix; +b) > 1 Vie{l,2,---,N} yperp

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 6

Support Vector Machines
000@0000000000

Linear SVMs (3): Lagrange Duality

m use the KKT conditions to derive the Lagrange duality
introduce Lagrange multipliers a;; > 0 to derive the Lagrangian

L(w,b,{os}) = 7WTW—|— Zaz(l -y (WTx; —|—b))

the Lagrange dual function:

L'({fei}) = inf L(w,b,{a;})
— Zal—fzz:a%ajylij X;

=1 j=1

E subject to the constraint: Z 105y, =0

© Hui Jiang 2020 published by Cambridge University Press

supplementary slides to Machine Learning Fundamentals

Chapter 6

Support Vector Machines
0000®000000000

Linear SVMs (4): Dual Problem

m linear SVMs are convex optimizatoin = strong duality

m the unique solution, i.e. (w*, b*, {a;“}) is a saddle point

N
SVM1 = I{naic L* (ai) s.t. Zaiyi =0
i i=1

prime problem dual problem

m solving the dual problem yields {c}

m linear SVMs: w* = Zfil afyix; and b =y, — wiTx;

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 6

Support Vector Machines
00000@00000000

Linear SVMs (5): SVM2

(051 Y1 1
o= y=1|: 1=
N Nx1 YN Nx1 1 Nx1
x]x1 X]XN
Q= Qi = vy’ O 1 xIx;
NXxXN NXN X}-Vxl X}vXN NxN

SVM2: Quadratic Programming

1
max 1Ta— —a’Qa
a 2

subject to

supplementary slides to Machine Learning Fundamentals

Support Vector Machines

0O00000e0000000

Soft SVMs

m how about linearly non-separable cases?
m allow non-negative error terms &

m soft SVMs: aim to minimize the soft margin

SVM3

N
1
3 w7 .
i gwTwHC

subject to soft margin =
yi(wTx; +0) > 1—& Vie{l,2,-- N} margin + linear errors
&>0 Vie{l,2,---,N}

supplementary slides to Machine Learning Fundamentals i ng 2020 published by Cambridge University Press

Chapter 6

Support Vector Machines

0000000 e000000

Soft SVMs: Dual Problem

m use the same technique of Lagrangian

m derive the Lagrange dual function

1
max 1Ta — —a"Qa
a 2

subject to

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 6

Support Vector Machines
00000000e00000

Nonlinear SVMs

m apply a mapping function to a higher
dimensional feature space: x — h(x)

. h(e)

. . . N he)
m construct linear SVMs in the feature space |«.', . x-tw 1o 0w ™

] M . . . h.yh\" he) m.)n(.)
m linear SVMs only depend on AT(x;)h(x;) RS 2 N
- . " h@)
m define the so-called kernel function r— feature spoce

D(xi,x;j) = hT(xi)h(x;)
m choose any kernel function based on the h(x) vs. ®(x;,x;)

Mercer's condition o h(x): R™ — R™
o polynomial kernel:
D(xi,x;) = (x[x; + 1) o ®(x;,x;):
R™ +R™ —» R

o Gaussian (or RBF) kernel:
O (xi, x;) = exp(—7[xi — x;[?)

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 6

Support Vector Machines
000000000e0000

Nonlinear SVMs: Kernel Trick

m nonlinear SVMs: also solve SVM4 but using

Q= [Qz‘j] = [ny
NXxN

m construct the nonlinear SVM:

D(x1,x1) D(x1,xn)

© D(xi,x;5)

N
y= sign(ZafinI)(xi,x) + b*>
=1

m nonlinear SVMs are very powerful
machine learning models

o e.g. a proper RBF kernel is used

m kernel tricks in machine learning

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 6

Support Vector Machines
0000000000e000

Solving Quadratic Programming in SVMs

Dual problem of all SVMs is a dense quadratic programming:
L(c)
. 1
min —a’Qa - 1T«
a 2

subject to yTaa =0 and 0 < a < C, where

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press
Chapter 6

Support Vector Machines
0000000000080

Projected Gradient Descent for SVMs

Projected Gradient Descent Algorithm

initialize () = 0, and set n = 0

while not converged do
(1) compute the gradient: VL(a™) = Qa™ — 1
(2) project the gradient to the hyperplane yTa = 0:

TL(a™) = V() - Y VL)
[lyll?
(3) projected gradient descent: a1V = a™ — 1y, . VL(a™)
(4) limit ™Y to [0, C]
B)yn=n+1
end while

m projected gradient descent: intuitive but inefficient in memory use

m e.g. sequential minimization optimization (SMO) method

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 6

Support Vector Machines
000000000000e0

Multi-Class SVM

m SVMs are good for binary classification problems

m how about multi-class problems?

m build multiple binary SVMs:

o one-vs-one strategy: a binary SVM to separate each pair of
classes

o one-vs-all strategy: a binary SVM to separate each class from
all others

o use majority-voting in the test stage

m directly formulate multi-class SVMs

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 6

Support Vector Machines
0000000000000e

SVM Summary

SVM Learning Procedure (in a nutshell)

Given a training set as D = {(xl,yl), (x2,Y2), " ,(xN,yN)}
1. choose a kernel function ®(x;,x;)
2. build the matrices Q, y and 1 from D and ®(x;,x;)

3. solve the quadratic programming problem to get:
o =[af,- - ay]T and b*

4. evaluate the learned model as:
¥ = sign (SN ary®(xi,x) + b*)

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 6

	Perceptron
	Linear Regression
	Minimum Classification Error
	Logistic Regression
	Support Vector Machines

