Matrix Factorization

Dictionary Learning

Chapter 7 Learning Discriminative Models in General

supplementary slides to Machine Learning Fundamentals [©]Hui Jiang 2020 published by Cambridge University Press

August 2020

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Chapter 7

Learning Discriminative Models	Ridge & LASSO	Matrix Factorization	Dictionary Learning
	00	000000	0000

Outline

1 A General Framework to Learn Discriminative Models

- 2 Ridge Regression and LASSO
- 3 Matrix Factorization
- 4 Dictionary Learning

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Chapter 7

Learning Discriminative Models	Ridge & LASSO	Matrix Factorization	Dictionary Learning
0000000			

=

Revisit Soft SVMs

review soft SVM formulation:

$$\min_{\mathbf{w},b,\xi_i} \quad \frac{1}{2}\mathbf{w}^\mathsf{T}\mathbf{w} + C\sum_{i=1}^N \xi_i$$

subject to

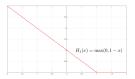
$$y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \ge 1 - \xi_i \quad \forall i \in \{1, 2, \cdots, N\}$$
$$\xi_i \ge 0 \quad \forall i \in \{1, 2, \cdots, N\}$$

reformulate the objective function:

$$\xi_i^* = H_1\Big(y_i(\mathbf{w}^{\intercal}\mathbf{x}_i + b)\Big) \quad \forall i \in \{1, 2, \cdots, N\}$$

$$\begin{cases} \xi_i \ge 1 - y_i(\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b) \\ \xi_i \ge 0 \end{cases}$$
$$\implies \xi_i \ge \max\left(0, 1 - y_i(\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b)\right)$$

introduce the hinge function $H_1(\cdot)$:



$$\xi_i \ge H_1\Big(y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b)\Big)$$

Matrix Factorization

Dictionary Learning

Learning Discriminative Models

soft SVMs can be reformulated as:

$$\min_{\mathbf{w},b} \left[\underbrace{\sum_{i=1}^{N} H_1 \Big(y_i(\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b) \Big)}_{\text{empirical loss}} + \underbrace{\lambda \cdot \|\mathbf{w}\|^2}_{\text{regularization term}} \right]$$

• the empirical loss is summed over all training samples when evaluated using the **hinge loss** function

- the regularization term is the L_2 norm of model parameters
- a general way to learn discriminative models is to minimize:

empirical loss + regularization term

Loss Functions in Machine Learning (1)

ML method	loss function		
-	0-1 loss: $H(x) = \begin{cases} 1 & x \le 0 \\ 0 & x > 0 \end{cases}$		
Perceptron	rectified linear loss: $H_0(x) = \max(0, -x)$		
MCE	sigmoid loss: $l(x) = \frac{1}{1+e^x}$		
Logistic Regression	logistic loss: $H_{\rm lg}(x) = \ln(1+e^{-x})$		
Linear Regression	square loss: $H_2(x) = (1-x)^2$		
Soft SVM	hinge loss: $H_1(x) = \max(0, 1 - x)$		
Boosting	exponential loss: $H_e(x) = e^{-x}$		

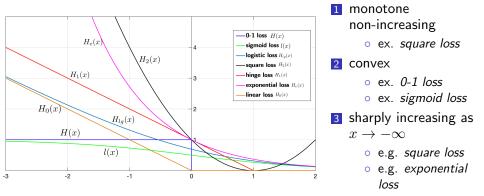
(ロ・・四・・日・・日・・日・ つくの)

Matrix Factorization

< D > < A > < B > < B >

Dictionary Learning

Loss Functions in Machine Learning (2)



Learning Discriminative Models	Ridge & LASSO	Matrix Factorization	Dictionary Learning
0000000			

Regularization in Machine Learning

soft SVMs can be formulated as the constrained optimization

$$\min_{\mathbf{w},b} \sum_{i=1}^{N} H_1 \Big(y_i (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b) \Big)$$

subject to

 $\|\mathbf{w}\|^2 \le 1$

- \blacksquare regularization \implies constraining model space in learning
- L_p norm regularization ($\forall p \ge 0$)

 $\|\mathbf{w}\|_p \le 1$

where

$$\|\mathbf{w}\|_p = \left(|w_1|^p + |w_2|^p + \dots + |w_n|^p\right)^{\frac{1}{p}}$$

supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Chapter 7

Learning Discriminative Models	Ridge & LASSO	Matrix Factorization	Dictionary Learning
	00	000000	0000

$$L_p$$
 norm (1)

• L_2 norm:

$$\|\mathbf{w}\|_2 = \sqrt{|w_1|^2 + \dots + |w_n|^2}$$

• L_1 norm:

$$\|\mathbf{w}\|_1 = |w_1| + \dots + |w_n|$$

• L_0 norm:

$$\|\mathbf{w}\|_0 = |w_1|^0 + \dots + |w_n|^0$$

∘ $\|\mathbf{w}\|_0$ (∈ \mathbb{Z}) equals the number of non-zero elements in \mathbf{w} • L_∞ norm:

$$\|\mathbf{w}\|_{\infty} = \max\left(|w_1|,\cdots,|w_n|\right)$$

 $\circ \| \mathbf{w} \|_\infty$ equals to the largest magnitude of all elements in \mathbf{w}

<2 ≥ > 2

Learning Discriminative Models	
00000000	

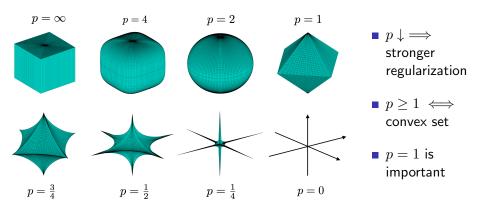
Matrix Factorization

イロト イロト イヨト イヨト

Dictionary Learning

æ

 L_p norm (2)



supplementary slides to Machine Learning Fundamentals [©] Hui Jiang 2020 published by Cambridge University Press

Chapter 7

Matrix Factorization

Dictionary Learning

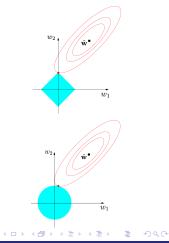
L₁ Norm Regularization Promotes Sparsity

- L_1 norm leads to sparse solutions
- the gradient of L₁ norm is constant until the parameter becomes zero

$$\frac{\partial \|\mathbf{w}\|_1}{\partial w_i} = \operatorname{sgn}(w_i) = \begin{cases} 1 & w_i > 0\\ 0 & w_i = 0\\ -1 & w_i < 0 \end{cases}$$

 the gradient of L₂ norm shrinks as the parameter becomes small

$$\frac{\partial \|\mathbf{w}\|_2^2}{\partial w_i} = 2w_i$$



Learning Discriminative Models	Ridge & LASSO	Matrix Factorization	Dictionary Learning
	●○	000000	0000

Ridge Regression

- ridge regression = linear regression + L_2 norm regularization
- given a training set as $\mathcal{D} = \left\{ (\mathbf{x}_i, y_i) \mid i = 1, 2, \cdots, N \right\}$

$$\mathbf{w}_{\mathsf{ridge}}^* = \arg\min_{\mathbf{w}} \left[\sum_{i=1}^{N} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_i - y_i \right)^2 + \lambda \cdot \|\mathbf{w}\|_2^2 \right]$$

the closed form solution:

$$\mathbf{w}_{\mathsf{ridge}}^* = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \cdot \mathbf{I}\right)^{-1} \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

may use gradient descent to avoid the matrix inversion

Learning Discriminative Models	Ridge & LASSO	Matrix Factorization	Dictionary Learning
	○●	000000	0000

LASSO

- LASSO = linear regression $+ L_1$ norm regularization
- given a training set as $\mathcal{D} = \left\{ (\mathbf{x}_i, y_i) \mid i = 1, 2, \cdots, N \right\}$

$$\mathbf{w}_{\mathsf{lasso}}^* = \arg\min_{\mathbf{w}} \underbrace{\left[\frac{1}{2}\sum_{i=1}^{N} (\mathbf{w}^{\mathsf{T}}\mathbf{x}_i - y_i)^2 + \lambda \cdot \|\mathbf{w}\|_1\right]}_{Q_{\mathsf{lasso}}(\mathbf{w})}$$

no closed-form solution exists, need to use gradient descent:

$$\frac{\partial Q_{\text{lasso}}(\mathbf{w})}{\partial \mathbf{w}} = \Big(\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathsf{T}}\Big) \mathbf{w} - \sum_{i=1}^{N} y_{i} \mathbf{x}_{i} + \lambda \cdot \mathsf{sgn}(\mathbf{w})$$

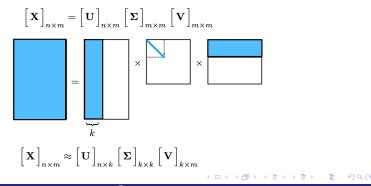
• LASSO imposes stronger L_1 regularization and gives sparse solutions, suitable for feature selection and interpretation

Matrix Factorization

Dictionary Learning

Matrix Factorization (MF): SVD

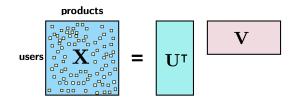
- use singular value decomposition (SVD) to factorize a matrix
- truncate to approximate: $\begin{bmatrix} \mathbf{X} \end{bmatrix}_{n \times m} \approx \begin{bmatrix} \mathbf{U} \end{bmatrix}_{n \times k} \begin{bmatrix} \mathbf{V} \end{bmatrix}_{k \times m}$
- matrix factorization leads to many real-world applications



Matrix Factorization

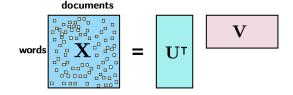
Dictionary Learning

MF Application (1): Collaborative Filtering



- collaborative filtering is the key technique for recommendation
- rely on factorizing a sparse matrix into two small dense matrices
 - construct the so-call user-product matrix
 - o yielding product vectors and user vectors
 - o measure similarity between different products (or users)

MF Application (2): Latent Semantic Analysis



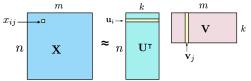
- latent semantic analysis (LSA) is an important technique in natural language processing
- rely on factorizing a sparse matrix into two small dense matrices
 - construct the so-call document-word matrix
 - o yielding word vectors and document vectors
 - o measure similarity between different words (or documents)

Matrix Factorization

Dictionary Learning

Matrix Factorization as Machine Learning

- SVD is not efficient for large sparse matrices, not suitable for partially observed matrices
- cast matrix factorization as a machine learning problem



learn U and V to minimize the reconstruction error for all observed elements in Ω and some regularization terms:

$$Q(\mathbf{U}, \mathbf{V}) = \sum_{(i,j)\in\Omega} (x_{ij} - \mathbf{u}_i^{\mathsf{T}} \mathbf{v}_j)^2 + \lambda_1 \sum_{i=1}^n \|\mathbf{u}_i\|_2^2 + \lambda_2 \sum_{j=1}^m \|\mathbf{v}_j\|_2^2$$

ι

Ridge & LASSO

Matrix Factorization

Dictionary Learning

Alternating Algorithm for Matrix Factorization

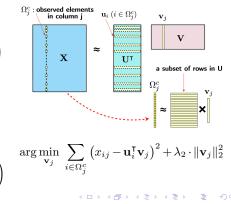
bilinear models suggest an alternating algorithm

1. keep U constant, estimate all \mathbf{v}_j in V

$$\mathbf{v}_j = \left(\sum_{i \in \Omega_j^c} \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}} + \lambda_2 \, \mathbf{I}\right)^{-1} \left(\sum_{i \in \Omega_j^c} x_{ij} \mathbf{u}_i\right)$$

2. keep V constant, estimate all \mathbf{u}_j in U

$$\mathbf{u}_{i} = \left(\sum_{j \in \Omega_{i}^{r}} \mathbf{v}_{j} \mathbf{v}_{j}^{\mathsf{T}} + \lambda_{1} \mathbf{I}\right)^{-1} \left(\sum_{j \in \Omega_{i}^{r}} x_{ij} \mathbf{v}_{i}\right)$$



Learning	Discriminative	Models

Alternating Algorithm for Matrix Factorization

set
$$t = 0$$

randomly initialize $\mathbf{v}_{j}^{(0)}$ $(j = 1, 2, \cdots, m)$
while not converged do
for $i = 1, \cdots, n$ do
 $\mathbf{u}_{i}^{(t+1)} = \left(\sum_{j \in \Omega_{i}^{T}} \mathbf{v}_{j}^{(t)} (\mathbf{v}_{j}^{(t)})^{\mathsf{T}} + \lambda_{1} \mathsf{I}\right)^{-1} \left(\sum_{j \in \Omega_{i}^{T}} x_{ij} \mathbf{v}_{i}^{(t)}\right)$
end for
for $j = 1, \cdots, m$ do
 $\mathbf{v}_{j}^{(t+1)} = \left(\sum_{i \in \Omega_{j}^{c}} \mathbf{u}_{i}^{(t+1)} (\mathbf{u}_{i}^{(t+1)})^{\mathsf{T}} + \lambda_{2} \mathsf{I}\right)^{-1} \left(\sum_{i \in \Omega_{j}^{c}} x_{ij} \mathbf{u}_{j}^{(t+1)}\right)$
end for
 $t = t + 1$
end while

- all updates in each step are parallelizable
- it may be faster to use SGD for very sparse matrices

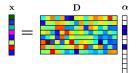
Learning	Discriminative	Models

Matrix Factorization

Dictionary Learning •000

Dictionary Learning (I)

• sparse coding assumption: each real sample is constructed from a large dictionary based on a sparse code $\mathbf{x} = \begin{bmatrix} | & | \\ \mathbf{d}_1 & \cdots & \mathbf{d}_n \\ | & | \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \mathbf{D} \boldsymbol{\alpha}$



dictionary learning: jointly learn the dictionary D and sparse codes from {α_i} from some training samples {x_i}

$$\mathbf{X} = \begin{bmatrix} | & | \\ \mathbf{x}_1 & \cdots & \mathbf{x}_N \\ | & | \end{bmatrix}_{d \times N} \qquad \mathbf{A} = \begin{bmatrix} | & | \\ \boldsymbol{\alpha}_1 & \cdots & \boldsymbol{\alpha}_N \\ | & | \end{bmatrix}_{n \times N}$$

Learning Discriminative Models	Ridge & LASSO 00	Matrix Factorization	Dictionary Learning ○●○○

Dictionary Learning (II)

- dictionary learning is cast as a machine learning problem:
 - minimize the reconstruction error
 - \circ add L_1 regularization to impose sparsity of all codes
 - $\circ~$ add L_2 regularization on dictionary to avoid overfitting

$$\arg\min_{\mathbf{D},\mathbf{A}} \quad \frac{1}{2} \underbrace{\sum_{i=1}^{N} \left\| \mathbf{x}_{i} - \mathbf{D} \,\boldsymbol{\alpha}_{i} \right\|_{2}^{2} + \lambda_{1} \sum_{i=1}^{N} \left\| \boldsymbol{\alpha}_{i} \right\|_{1} + \frac{\lambda_{2}}{2} \sum_{j=1}^{n} \left\| \mathbf{d}_{j} \right\|_{2}^{2}}_{Q(\mathbf{D},\mathbf{A})}$$

compute all gradients:

$$\begin{split} &\frac{\partial Q(\mathbf{D},\mathbf{A})}{\partial \mathbf{A}} = \mathbf{D}^{\mathsf{T}}\mathbf{D}\mathbf{A} - \mathbf{D}^{\mathsf{T}}\mathbf{X} + \lambda_1\cdot\mathsf{sgn}\big(\mathbf{A}\big) \\ &\frac{\partial Q(\mathbf{D},\mathbf{A})}{\partial \mathbf{D}} = \mathbf{D}\mathbf{A}\mathbf{A}^{\mathsf{T}} - \mathbf{X}\mathbf{A}^{\mathsf{T}} + \lambda_2\cdot\mathbf{D} \end{split}$$

Matrix Factorization

Dictionary Learning

Dictionary Learning (III)

Gradient Descent for Dictionary Learning

set t = 0 and η_0 randomly initialize $\mathbf{D}^{(0)}$ and $\mathbf{A}^{(0)}$ while not converged do update \mathbf{A} :

1

$$\mathbf{A}^{(t+1)} = \mathbf{A}^{(t)} - \eta_t \left(\left(\mathbf{D}^{(t)} \right)^{\mathsf{T}} \mathbf{D}^{(t)} \mathbf{A}^{(t)} - \left(\mathbf{D}^{(t)} \right)^{\mathsf{T}} \mathbf{X} + \lambda_1 \cdot \mathsf{sgn} \left(\mathbf{A}^{(t)} \right) \right)$$

update \mathbf{D} :

$$\mathbf{D}^{(t+1)} = \mathbf{D}^{(t)} - \eta_t \left(\mathbf{D}^{(t)} \mathbf{A}^{(t+1)} \left(\mathbf{A}^{(t+1)} \right)^{\mathsf{T}} - \mathbf{X} \left(\mathbf{A}^{(t+1)} \right)^{\mathsf{T}} + \lambda_2 \cdot \mathbf{D}^{(t)} \right)$$

adjust
$$\eta_t \rightarrow \eta_{t+}$$

 $t = t + 1$
nd while

supplementary slides to Machine Learning Fundamentals [©]Hui Jiang 2020 published by Cambridge University Press

Chapter 7

e

Learning Discriminative Models	Ridge & LASSO	Matrix Factorization	Dictionary Learning
	00	000000	000●

Sparse Coding

- sparse coding: given a dictionary D, find the sparse code α for a new observation x
- ideal but infeasible:

$$\arg\min_{\boldsymbol{\alpha}} \|\boldsymbol{\alpha}\|_0$$
 s. t. $\mathbf{D} \, \boldsymbol{\alpha} = \mathbf{x}$

- a practical solution:
 - replace intractable L_0 norm with L_1
 - relax to an imperfect reconstruction

$$\boldsymbol{\alpha}^* = \arg\min_{\boldsymbol{\alpha}} \quad \underbrace{\frac{1}{2} \| \mathbf{x} - \mathbf{D} \, \boldsymbol{\alpha} \|_2^2 + \lambda_1 \cdot \| \boldsymbol{\alpha} \|_1}_{Q'(\boldsymbol{\alpha})}$$

use gradient descent:

$$\frac{\partial Q'(\boldsymbol{\alpha})}{\partial \boldsymbol{\alpha}} = \mathbf{D}^{\mathsf{T}} \mathbf{D} \, \boldsymbol{\alpha} - \mathbf{D}^{\mathsf{T}} \mathbf{x} + \lambda_1 \cdot \mathsf{sgn}(\boldsymbol{\alpha})$$