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Revisit Soft SVMs

review soft SVM formulation:

SVM3

min
w,b,ξi

1

2
wᵀw + C

N∑
i=1

ξi

subject to

yi(w
ᵀxi + b) ≥ 1− ξi ∀i ∈ {1, 2, · · · , N}

ξi ≥ 0 ∀i ∈ {1, 2, · · · , N}

reformulate the objective function:

ξ∗i = H1

(
yi(w

ᵀxi+b)
)
∀i ∈ {1, 2, · · · , N}

{
ξi ≥ 1− yi(wᵀxi + b)
ξi ≥ 0

=⇒ ξi ≥ max
(

0, 1−yi(wᵀxi+b)
)

introduce the hinge function H1(·):

ξi ≥ H1

(
yi(w

ᵀxi + b)
)
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Learning Discriminative Models

soft SVMs can be reformulated as:

min
w,b

[
N∑
i=1

H1

(
yi(w

ᵀxi + b)
)

︸ ︷︷ ︸
empirical loss

+ λ · ‖w‖2︸ ︷︷ ︸
regularization term

]

◦ the empirical loss is summed over all training samples when
evaluated using the hinge loss function

◦ the regularization term is the L2 norm of model parameters

a general way to learn discriminative models is to minimize:

empirical loss + regularization term
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Loss Functions in Machine Learning (1)

ML method loss function

- 0-1 loss: H(x) =

{
1 x ≤ 0

0 x > 0

Perceptron rectified linear loss: H0(x) = max(0,−x)

MCE sigmoid loss: l(x) = 1
1+ex

Logistic Regression logistic loss: Hlg(x) = ln(1 + e−x)

Linear Regression square loss: H2(x) = (1− x)2

Soft SVM hinge loss: H1(x) = max(0, 1− x)

Boosting exponential loss: He(x) = e−x
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Loss Functions in Machine Learning (2)

1 monotone
non-increasing

◦ ex. square loss

2 convex

◦ ex. 0-1 loss
◦ ex. sigmoid loss

3 sharply increasing as
x→ −∞
◦ e.g. square loss
◦ e.g. exponential

loss
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Regularization in Machine Learning

soft SVMs can be formulated as the constrained optimization

min
w,b

N∑
i=1

H1

(
yi(w

ᵀxi + b)
)

subject to
‖w‖2 ≤ 1

regularization =⇒ constraining model space in learning

Lp norm regularization (∀p ≥ 0)

‖w‖p ≤ 1

where

‖w‖p =
(
|w1|p + |w2|p + · · ·+ |wn|p

) 1
p
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Lp norm (1)

L2 norm:
‖w‖2 =

√
|w1|2 + · · ·+ |wn|2

L1 norm:
‖w‖1 = |w1|+ · · ·+ |wn|

L0 norm:
‖w‖0 = |w1|0 + · · ·+ |wn|0

◦ ‖w‖0 (∈ Z) equals the number of non-zero elements in w

L∞ norm:

‖w‖∞ = max
(
|w1|, · · · , |wn|

)
◦ ‖w‖∞ equals to the largest magnitude of all elements in w
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Lp norm (2)

p ↓ =⇒
stronger
regularization

p ≥ 1 ⇐⇒
convex set

p = 1 is
important
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L1 Norm Regularization Promotes Sparsity

L1 norm leads to sparse solutions

the gradient of L1 norm is constant until
the parameter becomes zero

∂‖w‖1
∂wi

= sgn(wi) =


1 wi > 0
0 wi = 0
−1 wi < 0

the gradient of L2 norm shrinks as the
parameter becomes small

∂‖w‖22
∂wi

= 2wi
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Ridge Regression

ridge regression = linear regression + L2 norm regularization

given a training set as D =
{

(xi, yi) | i = 1, 2, · · · , N
}

w∗ridge = arg min
w

[ N∑
i=1

(
wᵀxi − yi

)2
+ λ · ‖w‖22

]
the closed form solution:

w∗ridge =
(
XᵀX + λ · I

)−1
Xᵀy

may use gradient descent to avoid the matrix inversion
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LASSO

LASSO = linear regression + L1 norm regularization

given a training set as D =
{

(xi, yi) | i = 1, 2, · · · , N
}

w∗lasso = arg min
w

[
1

2

N∑
i=1

(wᵀxi − yi)2 + λ · ‖w‖1
]

︸ ︷︷ ︸
Qlasso(w)

no closed-form solution exists, need to use gradient descent:

∂Qlasso(w)

∂w
=
( N∑

i=1

xix
ᵀ
i

)
w −

N∑
i=1

yixi + λ · sgn(w)

LASSO imposes stronger L1 regularization and gives sparse
solutions, suitable for feature selection and interpretation
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Matrix Factorization (MF): SVD

use singular value decomposition (SVD) to factorize a matrix

truncate to approximate:
[
X
]
n×m

≈
[
U
]
n×k

[
V
]
k×m

matrix factorization leads to many real-world applications
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MF Application (1): Collaborative Filtering

collaborative filtering is the key technique for recommendation

rely on factorizing a sparse matrix into two small dense
matrices

◦ construct the so-call user-product matrix
◦ yielding product vectors and user vectors
◦ measure similarity between different products (or users)
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MF Application (2): Latent Semantic Analysis

latent semantic analysis (LSA) is an important technique in
natural language processing

rely on factorizing a sparse matrix into two small dense
matrices

◦ construct the so-call document-word matrix
◦ yielding word vectors and document vectors
◦ measure similarity between different words (or documents)
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Matrix Factorization as Machine Learning

SVD is not efficient for large sparse matrices, not suitable for
partially observed matrices

cast matrix factorization as a machine learning problem

learn U and V to minimize the reconstruction error for all
observed elements in Ω and some regularization terms:

Q(U,V) =
∑

(i,j)∈Ω

(
xij−uᵀ

i vj

)2
+λ1

n∑
i=1

‖ui‖22 +λ2

m∑
j=1

‖vj‖22
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Alternating Algorithm for Matrix Factorization

bilinear models suggest an alternating algorithm

1. keep U constant,
estimate all vj in V

vj =

( ∑
i∈Ωc

j

uiu
ᵀ
i+λ2 I

)−1( ∑
i∈Ωc

j

xijui

)

2. keep V constant,
estimate all uj in U

ui =

( ∑
j∈Ωr

i

vjv
ᵀ
j+λ1 I

)−1( ∑
j∈Ωr

i

xijvi

) argmin
vj

∑
i∈Ωc

j

(
xij−uᵀ

i vj
)2

+λ2 · ‖vj‖22

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 7



Learning Discriminative Models Ridge & LASSO Matrix Factorization Dictionary Learning

Alternating Algorithm for Matrix Factorization

set t = 0
randomly initialize v

(0)
j (j = 1, 2, · · · ,m)

while not converged do
for i = 1, · · · , n do

u
(t+1)
i =

(∑
j∈Ωr

i
v

(t)
j (v

(t)
j )ᵀ + λ1 I

)−1(∑
j∈Ωr

i
xijv

(t)
i

)
end for
for j = 1, · · · ,m do

v
(t+1)
j =

(∑
i∈Ωc

j
u

(t+1)
i (u

(t+1)
i )ᵀ + λ2 I

)−1(∑
i∈Ωc

j
xiju

(t+1)
j

)
end for
t = t+ 1

end while

all updates in each step are parallelizable

it may be faster to use SGD for very sparse matrices
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Dictionary Learning (I)

sparse coding assumption: each real
sample is constructed from a large
dictionary based on a sparse code

x =

 | |
d1 · · · dn

| |


d×n

α1
...
αn

 = D α

dictionary learning: jointly learn the
dictionary D and sparse codes from {αi}
from some training samples {xi}

X =

 | |
x1 · · · xN

| |


d×N

A =

 | |
α1 · · · αN

| |


n×N
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Dictionary Learning (II)

dictionary learning is cast as a machine learning problem:
◦ minimize the reconstruction error
◦ add L1 regularization to impose sparsity of all codes
◦ add L2 regularization on dictionary to avoid overfitting

arg min
D,A

1

2

N∑
i=1

∥∥∥xi −Dαi

∥∥∥2
2

+ λ1

N∑
i=1

∥∥αi

∥∥
1

+
λ2
2

n∑
j=1

∥∥dj

∥∥2
2︸ ︷︷ ︸

Q(D,A)

compute all gradients:

∂Q(D,A)

∂A
= DᵀDA−DᵀX + λ1 · sgn

(
A
)

∂Q(D,A)

∂D
= DAAᵀ −XAᵀ + λ2 ·D
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Dictionary Learning (III)

Gradient Descent for Dictionary Learning

set t = 0 and η0

randomly initialize D(0) and A(0)

while not converged do
update A:

A(t+1) = A(t) − ηt
((

D(t))ᵀD(t)A(t) −
(
D(t))ᵀX+ λ1 · sgn

(
A(t)))

update D:

D(t+1) = D(t) − ηt
(
D(t)A(t+1)(A(t+1))ᵀ −X

(
A(t+1))ᵀ + λ2 ·D(t)

)
adjust ηt → ηt+1

t = t+ 1
end while
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Sparse Coding

sparse coding: given a dictionary D, find the sparse code α
for a new observation x

ideal but infeasible:

arg min
α
‖α‖0 s. t. D α = x

a practical solution:
◦ replace intractable L0 norm with L1

◦ relax to an imperfect reconstruction

α∗ = arg min
α

1

2

∥∥x−Dα
∥∥2
2

+ λ1 ·
∥∥α∥∥

1︸ ︷︷ ︸
Q′(α)

use gradient descent:

∂Q′(α)

∂α
= DᵀDα−Dᵀx + λ1 · sgn(α)
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