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Learning Discriminative Models
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Revisit Soft SVMs

m review soft SVM formulation: { &> 1—y(Wix; +b)

i >0
SVM3 ¢

N
. JI
min §W w—&—C’;{i

w,b,&;

= &; > max (O7 1—yi(wai+b)>

introduce the hinge function H(-):

subject to
yi(WTXi—‘rb)Zl—fi Vi€{172,--'7N}

& >0 Vie{l,2,--- N}

~ Hi(z) = max(0,1 - z)

m reformulate the objective function:

§& =H (yi(WTXH-b)) Vie{1,2,---,N} & > Hy (yi(WTXi + b))
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Learning Discriminative Models
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Learning Discriminative Models

m soft SVMs can be reformulated as:

N
i Hy (yi(wx; + b)) A w2
min ; (W% +0)) + Iwl]
. . g
empirical loss regularization term

o the empirical loss is summed over all training samples when
evaluated using the hinge loss function
o the regularization term is the Ly norm of model parameters

m a general way to learn discriminative models is to minimize:

empirical loss + regularization term
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Learning Discriminative Models
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Loss Functions in Machine Learning (1)

’ ML method ‘ loss function ‘
- 0-1 loss: H(x):{ 1 =0
0 >0
Perceptron rectified linear loss: Hy(z) = max(0, —z)
MCE sigmoid loss: [(x) = 1+lew

Logistic Regression logistic loss: H(z) =In(1+e %)
Linear Regression square loss: Ha(z) = (1 — x)?

Soft SVM hinge loss: Hi(z) = max(0,1 — x)
Boosting exponential loss: He(z) =e™*
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Learning Discriminative Models
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Loss Functions in Machine Learning (2)

monotone

non-increasing
—0-1loss [(x)
He(x 1a sigmoid loss () o ex. square loss
H (T) ——logistic loss H,,(x)
2(® — square loss x) convex
Hy(x) | —hinge loss i (x)
. ¢ ——exponential loss /7. (x) O ex. 0—1 /OSS
N fnear loss 11 o ex. sigmoid loss
Ho(2)™ 12 . .
AN sharply increasing as
H@) xr— —00
@) = o e.g. square loss
. ‘ BN o e.g. exponential
3 -2 -1 0 1 2

loss
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Learning Discriminative Models
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Regularization in Machine Learning

m soft SVMs can be formulated as the constrained optimization

N
1 . T~ .
min Z H, (yz(w X; +b)>
i=1
subject to
lw]* < 1
m regularization = constraining model space in learning
m L, norm regularization (Vp > 0)

Iwllp <1

where )

Iwllp = (Jwsl? + fewal? + - + wn]?)”
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Learning Discriminative Models
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L, norm (1)

m Ly norm:
Iwllz = Vw2 + - - + Jw,?
m Lq{ norm:
Wit = |wi] 4+ + |wnl
m Ly norm:

[wllo = |wi|® + - + Jw,|°

o |[wllo (€ Z) equals the number of non-zero elements in w

L norm:

[Wlloo = max ( fur], -+ s )

o ||w||eo equals to the largest magnitude of all elements in w
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Learning Discriminative Models
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mpl—
stronger
regularization

BEp>1l =
convex set

mp=1is
important

p:% p:% p:% p=0
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Learning Discriminative Models
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Ly Norm Regularization Promotes Sparsity

m L1 norm leads to sparse solutions

m the gradient of Ly norm is constant until
the parameter becomes zero

a”WHl 1 w; >0 ’
———=sgn(w;))=¢ 0 w;=0 “

Bwi -1 w; <0

m the gradient of Lo norm shrinks as the
parameter becomes small

Ollwl3
=2
Gwi v

[
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Ridge & LASSO
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Ridge Regression

m ridge regression = linear regression + Lo norm regularization

m given a training set as D = {(xi,yi) li=1,2,--- ,N}

N
) 2
Wi =argmin [ 3 (whx = ) -l
i=1
m the closed form solution:
ridge

—1
W', = (XTX+A-I) XTy

® may use gradient descent to avoid the matrix inversion
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Ridge & LASSO
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m LASSO = linear regression + L; norm regularization
m given a training set as D = {(Xi,yi) |i=1,2,--- ,N}

N
* : 1 2
Wiasso = argn‘%n |: 5 Z(WTXl - yl) +A- ||W||1 :|

i=1

Qlasso (W)

m no closed-form solution exists, need to use gradient descent:

6Qlasso (Z XX ) Z Yix; + A - sgn(w)

=1

m LASSO imposes stronger Ly regularization and gives sparse
solutions, suitable for feature selection and interpretation
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Matrix Factorization
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Matrix Factorization (MF): SVD

m use singular value decomposition (SVD) to factorize a matrix
i : ~ |U v
m truncate to approximate [X} [ ]nxk [ Lxm

nxm

m matrix factorization leads to many real-world applications
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Matrix Factorization
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MF Application (1): Collaborative Filtering

products

o
usersf o o X_E‘; UT
o

m collaborative filtering is the key technique for recommendation

m rely on factorizing a sparse matrix into two small dense
matrices

o construct the so-call user-product matrix
o yielding product vectors and user vectors

o measure similarity between different products (or users)
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Matrix Factorization
[e]e] Jlelele)

MF Application (2): Latent Semantic Analysis

documents

o
o [=]
words| o a x o

h Op D
o,

g O
—

m latent semantic analysis (LSA) is an important technique in
natural language processing
m rely on factorizing a sparse matrix into two small dense
matrices
o construct the so-call document-word matrix
o yielding word vectors and document vectors
o measure similarity between different words (or documents)
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Matrix Factorization
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Matrix Factorization as Machine Learning

m SVD is not efficient for large sparse matrices, not suitable for
partially observed matrices

m cast matrix factorization as a machine learning problem
m k m

u; —

$¢j —1—0

A% k

n X =l U I
J

m learn U and V to minimize the reconstruction error for all
observed elements in €2 and some regularization terms:

QU V)= 3 (zy—ulvy)’+ 2 > [wil+x > (vl
=1
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Matrix Factorization
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Alternating Algorithm for Matrix Factorization

bilinear models suggest an alternating algorithm

1. keep U constant,
estimate all v; in 'V

QS : observed elements .
7 in column j u; (i € Q5) vj

A%

& - 00

—1

e icQc
ZGQj 7,€Qj

a subset of rows in U

oo o0
2
3

2. keep V constant,
estimate all u; in U

argmin 3z —ulv,)* +ha- v, B
J

1 —
u; = ( Z VjV;+A1 |) ( Z xi]-vl) . zEQ].

JEQY JEQY
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Matrix Factorization
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Alternating Algorithm for Matrix Factorization

sett =0
randomly initialize vi” (j =1,2,--- ,m)
while not converged do

fori=1,--- ,ndo

-1
t+1 ) (t "
uf™* = <ZjeQ§ V;' )(V§' DT+ M |) (E]{Q: 5! ))
end for

for j=1,--- ,m do

-1
1 1 1 t+1
V§‘t+ )= <Zie§z; UEH )(UEH ))T + A2 ') (Zienj xij“i’ ))
end for
t=t+1
end while

m all updates in each step are parallelizable

m it may be faster to use SGD for very sparse matrices
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Dictionary Learning
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Dictionary Learning (1)

m sparse coding assumption: each real
sample is constructed from a large
dictionary based on a sparse code

| | “ -
x=|d - d, | =D a
| ‘ dxn [ On
m dictionary learning: jointly learn the
dictionary D and sparse codes from {a;}
from some training samples {x;}

| | dx N ‘ | nxN
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Dictionary Learning
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Dictionary Learning (I1)

m dictionary learning is cast as a machine learning problem:
o minimize the reconstruction error
o add L; regularization to impose sparsity of all codes
o add Lo regularization on dictionary to avoid overfitting

2 N /\2 " 2
R YD DI D Y ¥
i=1 j=1

Q(D,A)

Dai

arg mm

m compute all gradients:

9Q(D,A)
oA D™DA —D7X + Ay - sgn (A)
7(9@(8]:])3, A) =DAAT -XAT+ X-D
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Dictionary Learning (Ill)

Gradient Descent for Dictionary Learning

set t =0 and 7o
randomly initialize D©® and A(©
while not converged do

update A:

A Z A0 ((Du))TD(t)A(t) — (D)X 4+ A ~sgn(A(t)))
update D:

DD = DO _p, <D(t)A(“'1) (AGFDYT _X(AGHDYT 4y, ,D<t>>
adjust ¢ — Ne41

t=t+1
end while
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Dictionary Learning
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Sparse Coding

m sparse coding: given a dictionary D, find the sparse code «
for a new observation x
m ideal but infeasible:

argmin ||allp s.t. Da=x
(6%

m a practical solution:
o replace intractable Ly norm with L
o relax to an imperfect reconstruction

1
o = argmin L [x—Daf2+ Ao,

Q' ()
m use gradient descent:
/
a%éa) =D Da—-DTx+ A -sgn(a)
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