Chapter 8
Neural Networks

supplementary slides to
Machine Learning Fundamentals
©Hui Jiang 2020
published by Cambridge University Press

August 2020

53 CAMBRIDGE

UNIVERSITY PRESS

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Outline

Artificial Neural Networks

Neural Network Structures

Learning Algorithms for Neural Networks
Heuristics and Tricks for Optimization

End-to-End Learning

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts
©00000

Biological Neuronal Networks

(a) neuronal networks

Telodendria i ~
w ¢

X p
Nucleus '\ -
Axon hillock Synaptic terminals
| Golgi apparatus
Endoplasmic
reticulum \,JK -
Mitochondrion Dendrite

/ \\l Dendritic branches

(b) biological neuron

m brain: a large number of inter-connected neurons

m neuron: axon, dendrites and synapse

m mechanisms of biological neuronal networks

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts
000000

Artificial Neural Networks (ANNs)

m motivated by biological neuronal networks

m artificial neuron: a simplified computational model to simulate
a biological neuron y = ¢(3_, wiz; + b)
o nonlinear activation function: sigmoid, tanh, RelLU, etc.

bias

®

T1

T2 o @

75 @) B)—[o()}—y

; : sum activation output
function

Tm

inputs weights

m ANNs consist of a large number of artificial neurons

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts

[e]e] lele]e}

Nonlinear Activation Functions

tanh : y = % ReLU : y = max(0, z)
€ €

sigmoid : y =

T+e

m sigmoid: (0, 1), monotonically increasing, differentiable everywhere
m tanh: (—1,1), monotonically increasing, differentiable everywhere

m RelLU: [0,00), monotonically non-decreasing, unbounded

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts
00000

Neural Networks: Mathematical Justification

m neural networks are primarily used as a function approximator

input neural output
features |:> :> targets
N networks y

what is the modeling power of neural networks?
linear functions vs. nonlinear functions
f(x) is an LP function (Vp > 0) iff [|f(x)[P dx < oo

including either energy-limited functions, or bounded functions
on finite-domain

m e.g. all L? functions (p = 2) form a Hilbert space, consisting
of all functions arising from any physical process

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts
000000

Neural Networks: Universal Approximator (I)

multilayer perceptrons (MLP): a simple structure for neural nets,
containing only one hidden layer between input and output

Hidden Layer

continuous functions C' (or L? functions)

A

A CACAg---CAyC---CAx =C(or LP)

(c) MLP (d) nested function spaces

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts
00000e

Neural Networks: Universal Approximator (II)

m MLPs are universal function approximators

Theorem 1

Denote all continuous functions on R™ as C. If the nonlinear
activation function ¢(-) is continuous, bounded and non-constant,
then Ay is dense in C as N — o0, i.e. limy_soo Ay = C.

Theorem 2

Denote all L? functions on R™ as LP. If the ReL U function is used
as the activation function ¢(-), then Ay is dense in LP as N — oo,
i.e. limN%OO AN =LP,

m applicable to many other neural network structures

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
©000000000000000000000

Neural Network Structures

m Neurons vs. Layers of Neurons

m Building Blocks

full connection, convolution

nonlinear activation, softmax, max-pooling
normalization

time-delayed feedback

tapped delay line

attention

O O O O o o

m Case Studies:

fully-connected deep neural networks (DNNs)
convolutional neural networks (CNNs)
recurrent neural networks (RNNs)
transformers

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
0®00000000000000000000

Neurons vs. Layers of Neurons

® a neuron: mathematically represents a variable in computation
m convenient to group relevant neurons as a layer
m a layer of neurons: represents a vector in computation

m neural nets are constructed by arranging layers of neurons

|

HALLAL
EIel)

i

o
Cl

<
°
S

a neuron h b = Uy g s)

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
00®0000000000000000000

Building Blocks to Connect Layers (I)

m full connection: y = Wx + b

o W € R"*? and b € R" denote all
parameters in a full connection

o nx (d+ 1) parameters

o computational complexity is O(n x d)

o mainly used for universal function
approximation

m nonlinear activation: y = ¢(x) @@E)@) - @] xew
o ¢(-): ReLU, sigmoid or tanh
o no learnable parameter in this connection

o used to introduce nonlinearity W®® - yeR

y = o(x)

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
000®000000000000000000

Building Blocks to Connect Layers (II)

m softmax

y = softmax(x)

eTi
Where yz — zn for a” ’L y = softmax(x)

o no learnable parameter in this connection |@@@ @
o used to generate probability-like outputs

y € [0,1]"

® max-pooling

y = maxpool ,,,(x) (x € R",y € Rim)

o no learnable parameter in this connection
o used to reduce the layer size

o make the output less sensitive to small veRs

translation variations

y = maxpool,,, (x)

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
0000800000000000000000

Building Blocks to Connect Layers (lII)

m convolution: ‘ ‘ ‘ ‘
Ty | T2 |3 | ...

d
Td—l‘ Id‘ xeR

y=xsw (xeR! weR/ yeR")

kernel : w € RY

Yn-1| Yn | y €R"

where y; = 21 wi x @jpi1 (7)) o2 [[| -
o kernel w represents f learnable parameters

o computational complexity: O(d x f)
o output neurons are n =d — f 4+ 1 but can input
be adjusted by zero-padding and striding)

o convolution vs. full connection

9«'1‘12|1‘3 |.r4 Ts .r6|1'7|

stride s=1
output
y

locality modelling: only capture a local _
feature =
weight sharing: f(< d) weights (vs. d x n)
. . g ; stride s=2
weights in full connection) o

T | T

T3 ‘ T4 | 5 ‘ T | .1'-;|

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
00000@0000000000000000

Building Blocks to Connect Layers (V)

= normalization

o normalize the dynamic ranges of neurons
o smooth out the loss surface to facilitate

optimization O®® - @) yer

batch normalization: y = BN, g(x)

y = norm,_5(x)

(1) normalize: &; = LM (2) re-scaling : y; = @i+ 0;
ol(i) +e
where pg(i) and o2(i) denote the sample mean and the sample

variance over the current mini-batch
layer normalization: y = LN, g(x)
where local statistics are estimated over all dimensions in each
input vector x
supplementary slides to Machine Learning Fundamentals ©
Chapter 8

ui Jiang 2020 published by Cambridge University Press

Structures
0000008000000000000000

Building Blocks to Connect Layers (V)

m time-delayed feedback

_ -1
yi-1=2 (yt) Yoy CRY
o 27! indicates a time-delay unit, which is
physically implemented as a memory unit ‘ []
o recurrent neural ne’Fworks (F\"NNs) use 000 O |y, g
feedback to memorize the history

o feedback paths introduce circles in nets

m tapped delay line
o stored in a line of memory units
o linearly combined to feed forward
. L-1
Zy = Zi:() a; QYyt—i
where {a;} are learnable parameters

. AV
o no feedback path :> non r_ecurrent 7 000000 3%
structures to memorize the history
supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
0000000@00000000000000

Building Blocks to Connect Layers (V): Attention (1)

m attention: use time-variant scalar
coefficients in tapped delay lines

tapped-delay-line is long enough to store
entire sequence
introduce an attention function g()

g(anks) = [eo(t) er(t) - epa ()]

o q: € R!: query vector at time t y[©600 T ‘D—I‘D—I—
o k¢ € RY: key vector at time t @ o) Ja@ Jaelt) - fast)
i e O -+
normalize to one by softmax 3

z [CG0 ~Q[606 - 7

a, = softmax(g(qy, ki)
linearly combined at each time ¢

2 =30 ait)yi—i = [ye yi1 - Yeer+1] &

supplementary slides to Machine Learning Fundamentals ©

Chapter 8

ui Jiang 2020 published by Cambridge University Press

Structures
0000000080000000000000

Building Blocks to Connect Layers (VI): Attention (2)

use a matrix form to represent attention for all time instances

value matrix: V = [yT yro1 - yl}

nxT

. A
query matrix: Q = [qT qr—1 - ql}
IxT

key matrix: K 2 [kT kpr_q1 --- kl}l .
X

attention in a compact form:
Z=V softmax(g(Q, K))

where softmax is applied to ¢(Q, K) € RT*T column-wise

attention represents a very flexible and complex computation
in neural networks, depending on how to choose the four
elements: V, Q, K and g(-)

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
0000000008000000000000

Case Study (I): Fully-Connected Deep Neural Networks (1)

hidden hidden hidden hidden: hidden: hidden hidden : output :
layer layer layer layer : layer @ layer layer @ layer *

supplementary slides to Machine Learning Fundamentals C]

Chapter 8

Jiang 2020 published by Cambridge University Press

Structures
0000000000 800000000000

Case Study (I): Fully-Connected Deep Neural Networks (2)

Forward Pass of a fully-connected DNN

For the input layer: zg=x
For each hidden layer [=1,2,--- , L — 1:

a = W(l)zl_l + b(l)

z] = ReLU(al)

For the output layer:
a, = WWHz | + bl

y = z1, = softmax(ar)

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
0000000000080000000000

Case Study (II): Convolutional Neural Networks

m convolutional neural networks (CNNs) are currently the
dominant model for images/videos

m CNNs mainly rely on the basic convolution sum

m extension #1: allow multiple feature plies in input
m extension #2: allow multiple kernels

m extension #3: allow multiple input dimensions

m extension #4: stack many convolution layers

m typical CNN architectures:
o AlexNet, VGG, ResNet, etc.

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
000000000000 8000000000

From Convolution Sum to CNNs (1)

extension #1: allow multiple feature plies in input x

m each input position contains p feature
plies (e.g. R/G/B in color images)

m extend kernel to p plies (p x f weights) i":,’"t
plies
p f x
ZZ Wi g XTj4i—1,k (V]:1,27
k=1 i=1
wia kernel
Y = X*W (XGRde,WGRpr,yERn) ’_°’;'_ w
Wip
m computational complexity: O(d - f - p) ==
m zero-padding and striding [rfiva] vs - ot 9]
output y

m locality modeling, weight sharing

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
0000000000000e00000000

From Convolution Sum to CNNs (2)

extension #2: allow multiple kernels for more local features

m a kernel captures only one local feature

m extend to k kernels (p x f X k weights) (TTTT1]

m output is a k x n feature map . o . meut
aps
P f *
Yji,g2 = Z Z Wiy iz, jo X Tji+in—1,iz
ig=11i1=1 k
X kernels
(vjlzla"'7n; .72:17 7k) w
y = X4W (XGRde, WGRPX‘ka, yekan)
feature
m computational complexity: O(d- f - p- k) maps
y

m zero-padding and striding

m locality modeling, weight sharin
supplementary slides to Machine Learning Fundamentals ‘© Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
0000000000000080000000

From Convolution Sum to CNNs (3)

m extension #3: allow multiple input dimensions

m expand input dimension to handle multi-dim data,
e.g. images (2D) and videos (3D)

m for 2D images, each input x is a d X d X p tensor,

extend each kernel into an f x f X p tensor,
output is an n X n X k feature map

r f f
Yj1,d2,d3 = E E E Wiy ig,iz,j3 XTj1+i1—1,52+iz—1,i3

ig=1ip=141=1

(jlz]‘v'” » 15 j2:1a"' , 13 j3:15"' 7k)
Y = XxW (xeRdXdXP’ WG]RfoXpXk7 yeRanxk) \

m computational complexity: O(d? - f2-p - k) ‘

m locality modeling: capture 2D local features "

supplementary slides to Machine Learning Fundamentals © Huyi Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
000000000000000e000000

From Convolution Sum to CNNs (4)

extension #4: stack many convolution layers to form CNNs

2 g 3] & 2 8 2

o -] S o — el o N (3]] o

8 X E X % X

Q bel & & @ S @) ©° S| %
2] - S H NS Sls S |als @ls] |8]s olo|S| 3

8 Ge) &2 TL & PR EIRCIEIR R IR IR IR
—_ X |2 0 ! ™| o A2 A 2@ O =

a 2 ozt e & x [g X | X | Xl TSl E 2
[> x 2} % ™ L L} QL £
& > 3 ~ <} Llels| =
© s £ £ > £ > > > Cl

S 5 £ £ £ S 2
E o S 9 2
£ 8 8 § 8 § §

{

fully
I x € Réxdxp y € Rnxnxk gheRmens § gemieneniaseiasenssecnen e
: e 3 013 o[04 e

[

« 9 |18 56 |66

tlis |79 (65 21| 2x2
: [0 [180] 15 | 18 | max-pooling
we]ij/xyxk . :

m stacked convolution layers: hierarchical visual feature extraction

m fully-connected layers: a universal function approximator to map
these features to the target labels

supplementary slides to Machine Learning Fundamentals

ang 2020 published by Cambridge University Press

Structures
0000000000000000e00000

Convolutional Neural Networks (CNNs)

m locality modelling = hierarchical
modeling
o recursively combine local features

o receptive fields in CNN: broaden in
upper layers 4‘,»

m CNNs are dominant in image
classification, segmentation, generation

m typical CNN architectures:
o AlexNet, VGG, ResNet, etc.

o ResNet: a very deep structure with
shortcut paths

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
0000000000000000080000

Case Study (IIl): Recurrent Neural Network (RNN)

m use a simple RNN to process a sequence

of input vectors: {x1,x2, -+, X7}
mforallt=1,2,---,T Xe
ay = Wi[xi; heq] + by \h,l

" 097
= Wsh, +b tanh()
Yo el e h GO0 O

where W1, by, W5 and by are all RNN :
parameters

Yt

m RNN generates an output sequence:
{Y1a}’27 o ayT}

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
000000000000000000e000

Case Study (IIl): Recurrent Neural Network (RNN)

X1 X2 X3 XT

hy * h; * hy * hr_, *
600 Ooo0 0 /000 o000 000 ojooo-o
ar

m an RNN can be unfolded into a non-recurrent structure

m RNNs fail to capture long-term dependency due to long
traversal paths in the deep structures

m more effective RNN structures, e.g. LSTMs, GRUs, HORNNs

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
0000000000000000000e00

Case Study (IV): Transformer (1)

use a particular attention mechanism to directly map an input
sequence to an output sequence

X:[XT-~-x2x1] — Z:[ZT--~ZQZ1]
choose query matrix Q, key matrix K and value matrix V as:
Q=AX K=BX V=CX

where A, B € R4 C € R°*?; Q,K € R™*T and V € Ro*T
define the attention function as a bilinear function:

9(QK)=Q K (eR™T)
transformer as attention:

7= (CX) softmax ((AX) T (BX))

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
00000000000000000000e0

Case Study (IV): Transformer (2)

X = .
[E E E E]de two enhancements:
¢ lA and T B use multiple
heads in each
transformer
AR R [SEses]
v-[888 -] QTz[. 0]
ot m o stack more

transformer
layers to form

Z = V softmax(QTK) [Q'K] a deep
/ structure
2~ [B80 -]

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Structures
000000000000000000000e

Case Study (IV): Transformer (3)

Multi-head Transformer

Choose d = 512, o = 64, a multi-head transformer will transform an
input sequence X € R512XT into Y € R"*T":

m multi-head transformer: use 8 sets of parameters
A0 BU) ¢ RIX512 C) g R64%512 (j=1,2,---,8)

mforj=1,2.--.8:
ZW0) € RXT = (CWX) softmax((AVX)"(BUX))
m concatenate all heads: Z € R%'2*7 = concat(ZM,Z®, ... | Z®)

m apply nonlinearity: Y = feedforward (LN,yﬂ (X + Z))

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Learning Algorithms
@®0000000000000

Learning Neural Networks

m Loss Function

m Optimization Method: SGD

m Automatic Differentiation

o full connection
nonlinear activation
softmax
max-pooling
convolution
normalization

O O O o o

m Error Backpropagation Examples:
o fully-connected deep neural networks

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Learning Algorithms
O@000000000000

Loss Function

m once network structure is determined, a neural network can be
viewed as a multivariate and vector-valued function as:

y = f(x;W)
where W to denote all network parameters
m learn W from a training set of input-output pairs:
Dy = {(x1,11), (x2,72), -+, (1) |
m mean square error (MSE) for regression problems
Quse(W; Dx) = 2235, 11 (s W) — i
m cross-entropy (CE) error for classification problems

Qce(W;Dn) = — Zfil In [yi]ri == Zi\;l In {f(XiSW)}

Ti

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Learning Algorithms Optimization Tricks End-to-End Learning
0000000000000 0 (e]e)

Optimization Method: mini-batch SGD

mini-batch SGD to learn neural networks

randomly initialize WO set N, n=0and t=0
while not converged do
randomly shuffle training data into mini-batches
for each mini-batch B do
for each x € B do
compute the gradient:
end for .
update model: W+ =W — 57 o SQ(E—ix)
n=n+1
end for
adjust 7; = Mey1
t=t+1
end while

QW™ ;%)
PA%

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Learning Algorithms
[ee]e] lelelelelelelelele]e)

Automatic Differentiation (I)

m how to efficiently compute gradients for arbitrary networks?
m automatic differentiation (AD), a.k.a. error back-propagation:

o the most efficient for any network structure by systematically
applying the chain rule
oQ

define the error signal: e = S*

a simple example: By

derive the gradient by local computations:

o y=fwl@) e 0Q _ 0Q 9y _ ,Ofw(2)
ow Jy Ow ow

back-propagate the error signal:
given any objective o 000 o)
. _ Yy __ w (T
function Q(-) % T oy os = ¢ i

supplementary slides to Machine Learning Fundamentals ©

Chapter 8

i Jiang 2020 published by Cambridge University Press

Learning Algorithms
[e]e]ele] lelelelelelelele]e)

Automatic Differentiation (II)

extend AD to a vector-input and
vector-output module:

Y1 1 w1
Y2 X2 w2
x € R™ y € R" y = . X = . W =
o — y — fw(x) I . N
Yn Tm Wk

compute two Jacobian matrices: m given the error signal e A ?TQ (e R
Y

Jo 0y; 1. local gradients:
= | G,)
"Jkxn % =Jw e
I = % 2. back-propagation:
=
81'1 mxn % =Jye

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Learning Algorithms
[e]e]ele]e] lelelelelelele]e)

Automatic Differentiation (I11)

m full connection from x € R? to output y € R":
y=Wx+b

where W € R™*? and b € R”
o back-propagration:

o= |2l —wr o 9w
&ri ox
dxn
o local gradients:
2Q
9
9 | o exr 9Q _
oW @ Jb
Oyn

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Learning Algorithms
[ee]ele]ele] lelelelelele]e)

Automatic Differentiation (I11)

m nonlinear activation from x (€ R") to y (€ R"):

y = é(x)

m no learnable parameters = no local gradients
m back-propagation:

oQ

ox

where ® denotes element-wise multiplication

o for ReLU activation: % =H(x)0Oe
o for sigmoid activation: % =lx)o(1-I(x)oe

=Je=¢(x)0e

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Learning Algorithms
0O000000e000000

Automatic Differentiation (IV)

softmax: mapping an n-dimensional vector x (€ R™) into
another n- dimensional vector y inside the hypercube [0, 1]7,
with y; = Zn - foralli=1,2,-

no learnable parameters = no IocaI gradients
the Jacobian matrix

n(l—vy1) —vy2 - —Y1Yn
[ayj] —yiy2 y2(l—y2) -+ —Y2Yn
Jx = =
8% .
Xn
—Y1Yn —Y2yn 0 Yl —yn)l,n
back-propagation:
oQ
— =Jxe
ox x

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Learning Algorithms
000000008000 00

Automatic Differentiation (V): Convolution (1)

= convolution: mapping an input vector x € R? to an output vector
y € R” by y = x * w with w € R/, with

f
yj:Zwixxj-‘ri—l]:1,2,TL
=1

m the Jacobian matrix J4:

o _
w2 w1
3. — |9 _ .
| Oz To|ws o wper T wn
dxn wy wa

[G)

supplementary slides to Machine Learning Fundamentals

Chapter 8

ui Jiang 2020 published by Cambridge University Press

Learning Algorithms
000000000 e0000

Automatic Differentiation (V): Convolution (2)

m back-propagation by convolution:
propag Y O’ olo % 010 e®
w 52 ‘
2Q 2Q i
w2 5% + w1 5 -
00 _ g _[mEreE
ox : c.
oQ W wr - we wy
'LUf OYn
2 O, 2alsofoal] [23] 2=t
m computing local gradients by convolution:
T By - T,
O T2 T3 s Tn+1 O A
Jw = 29 = | . . . 2—Q:Jwe:x*e
fxXn . . .
Tf Ty+r o ot Tedf-1d g,

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Learning Algorithms
0000000000 e000

Automatic Differentiation (V): Convolution

m extend to 2D convolutions
m back-propagation by convolution:

0Q <~ ‘
8T(i:z:ej()*w (i=1,2---p)

j=1
m computing local gradient by convolution:

9@

where x; € R**4 and e; € R™"

w2 w () () W22 way W22 way
wyp ez () e1r wyy
0 €1 exn (€21 €22 €21 €22
wao €12 €11 w21
W12 €22 €21 wyy
e11) e12 €11 €12 €11 €12
Wa2 €22 €21 w21
w12 Wiy W12 wyy wi2 W11

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Learning Algorithms
0000000000000

Automatic Differentiation (VI)

® max-pooling:

o no parameters = no local gradients O o [oad J
o back-propagation: o | 18456 66 \78.\94
15|79 | 65 121 189765
0Q gTqi ifi=j 9 |1891157 18 | 2x2
dr; | 0 otherwise max-pooling

m batch normalization: y = BN, g(x)
o back-propagation:
M~oe(™ =M m@e“)—w@x(m@(z ““@x"”)

0Q _ _
ax(m) M\/G'B(i)+5
local gradients:
) NG 8
Q_Zk_ ()@e Q_Zk 1e

supplementary slides to Machine Learning Fundamentals © Huyi Jiang 2020 published by Cambridge University Press

Chapter 8

Learning Algorithms
0000000000000

Error Backpropagation Example: Fully-Connected DNNs

m all parameters:
W={Wh bb|1=12-.-L}

m the cross-entropy error:

Q(W;x)=—1In [y]r =

QW) ..o — L goq)

Oy Yr

m define error signals e() = %ﬁ?x) for all
I=L,- 2,1

m apply AD to the softmax, nonlinear
activation and full connection modules to
back-propagate error signals

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Learning Algorithms Op tion Tricks End-to-End Learning
0000000000000 00 00

Error Backpropagation Example: Fully-Connected DNNs

backward pass of fully-connected DNNs

for the cross-entropy error of any input-output pair (x,r)
for the output layer L:
ell) — [yl R e yn]T
for each hidden layer [= L —1,--- 2, 1:

o® = ((WOD)Tel+D) © Hi(z)

for all layers [= L,--- ,2, 1:
0QWix) _ (I T
oW el)(Zlfl)
0QW;x) _ (1
o0 = e
where y and z; (I =0,1,--- ,L — 1) are computed in the forward pass

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Optimization Tricks
00000

Heuristics and Tricks for Optimization

m Hyperparmeters

Optimization Method: ADAM

m Regularization

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Fine-tuning Tricks

Chapter 8

Optimization Tricks
[o] lele]e]e}

Hyperparmeters of Learning Neural Networks

m initial parameters
m epoch number

® mini-batch size

m learning rate
o a good initial learning rate g

o an annealing schedule to adjust 1, — 1441

o call for some self-adjusting mechanisms, e.g. Adagrad,
Adadelta, ADAM, AdaMax, etc.

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Optimization Tricks End-to-End Learning
[e]e] le]e]e} (e]e)

Optimization method: ADAM

ADAM to learn neural networks

randomly initialize W(O), andsetn, t=0,n=0and up =vo =0
while not converged do
randomly shuffle training data into mini-batches
for each mini-batch B do
for each x € B do

compute %
end for o
&n = ﬁ 2 xeB W
Unt1 =alp +(1—a)gn and vny1 = Bvn + (1 - 58)gn © 8n
ﬁn+1 = % and \7”+1 = 1‘”61;;11
update model: WD = W _ g, © ((f/n+1 + 62)*%)
n=n+1
end for
t=t+1
end while

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Optimization Tricks
000e00

Self-adjusting Mechanism in ADAM

m use exponential average to accumulate 1st-order and
2nd-order moments (u,, and v;,) of the gradient (g,)

m normalize to yield unbiased estimates:
Elin1()] =Elgn()] E[ons1()] = E[g2()]
m model update formula:

ﬂn-&-l(i)

Wit — oy et
! ! ’lA)n+1(Z) + 62

m self-adjusting model updates AWE”):

||AWE”)||2 ~ 772 (E[ﬂwl(i)])? _ (E[n (i)])2

Efoni1()] (E[ga(i)])” + var[gn(i)]

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Optimization Tricks
000080

Regularization in Neural Networks

m weight decay: use Lo norm regularization

IQ(W™)

—X\-Wm
oW

QW) + 2 - [W = Wor) =Wt
m weight normalization: normalize weight vectors to facilitate
optimization
1. tied-scalar reparameterization:
w=vy-v st |v[[<1
2. normalizing reparameterization:
al

W = v
[vIl

m dropout

m data augmentation

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

Optimization Tricks
O0000e

Fine-tuning Tricks

critical to monitor three learning curves:

very high learning rate

m the objective function (a.k.a. loss
function)

loss function

low learning rate

high learning rate

m performance on training data

good learning rate

epoch
m performance on development data

supplementary slides to Machine Learning Fundamentals © Hui Jiang 2020 published by Cambridge University Press

Chapter 8

End-to-End Learning
[o)

End-to-End Learning

m end-to-end learning: train a single model to map directly
from raw data to final targets

m neural networks are suitable for end-to-end learning
o flexible architectures to accommodate a variety of raw data
o powerful enough to approximate potentially complex mapping
o arrange output structures to generate real data, e.g.
deconvolution layers for images, WaveNet for audio/speech

m the popular encoder-decoder structure

m sequence-to-sequence learning: learn deep neural networks
to map from one input sequence to an output sequence
o suitable for many NLP tasks, e.g. machine translation,
question-answering, etc.

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

End-to-End Learning
oce

Sequence-to-Sequence Learning

REBRALE

linear sigmoid
layer layer

‘an

Foy |

s

L©
ol

encoder decoder

m encoder and decoder are powerful neural networks that can
handle sequences, e.g. RNNs, LSTMs, or transformers

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 8

	Artificial Neural Networks
	Neural Network Structures
	Learning Algorithms for Neural Networks
	Heuristics and Tricks for Optimization
	End-to-End Learning

