
Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Chapter 8
Neural Networks

supplementary slides to
Machine Learning Fundamentals

c©Hui Jiang 2020
published by Cambridge University Press

August 2020

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Outline

1 Artificial Neural Networks

2 Neural Network Structures

3 Learning Algorithms for Neural Networks

4 Heuristics and Tricks for Optimization

5 End-to-End Learning

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Biological Neuronal Networks

(a) neuronal networks (b) biological neuron

brain: a large number of inter-connected neurons

neuron: axon, dendrites and synapse

mechanisms of biological neuronal networks

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Artificial Neural Networks (ANNs)

motivated by biological neuronal networks

artificial neuron: a simplified computational model to simulate
a biological neuron y = φ(

∑
iwixi + b)

◦ nonlinear activation function: sigmoid, tanh, ReLU, etc.

ANNs consist of a large number of artificial neurons

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Nonlinear Activation Functions

sigmoid: (0, 1), monotonically increasing, differentiable everywhere

tanh: (−1, 1), monotonically increasing, differentiable everywhere

ReLU: [0,∞), monotonically non-decreasing, unbounded

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Neural Networks: Mathematical Justification

neural networks are primarily used as a function approximator

what is the modeling power of neural networks?

linear functions vs. nonlinear functions

f(x) is an Lp function (∀p > 0) iff
∫
x |f(x)|p dx <∞

including either energy-limited functions, or bounded functions
on finite-domain

e.g. all L2 functions (p = 2) form a Hilbert space, consisting
of all functions arising from any physical process

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Neural Networks: Universal Approximator (I)

multilayer perceptrons (MLP): a simple structure for neural nets,
containing only one hidden layer between input and output

(c) MLP (d) nested function spaces

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Neural Networks: Universal Approximator (II)

MLPs are universal function approximators

Theorem 1

Denote all continuous functions on Rm as C. If the nonlinear
activation function φ(·) is continuous, bounded and non-constant,
then ΛN is dense in C as N →∞, i.e. limN→∞ ΛN = C.

Theorem 2

Denote all Lp functions on Rm as Lp. If the ReLU function is used
as the activation function φ(·), then ΛN is dense in Lp as N →∞,
i.e. limN→∞ ΛN = Lp.

applicable to many other neural network structures

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Neural Network Structures

Neurons vs. Layers of Neurons

Building Blocks

◦ full connection, convolution
◦ nonlinear activation, softmax, max-pooling
◦ normalization
◦ time-delayed feedback
◦ tapped delay line
◦ attention

Case Studies:

1 fully-connected deep neural networks (DNNs)
2 convolutional neural networks (CNNs)
3 recurrent neural networks (RNNs)
4 transformers

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Neurons vs. Layers of Neurons

a neuron: mathematically represents a variable in computation

convenient to group relevant neurons as a layer

a layer of neurons: represents a vector in computation

neural nets are constructed by arranging layers of neurons

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Building Blocks to Connect Layers (I)

full connection: y = Wx + b

◦ W ∈ Rn×d and b ∈ Rn denote all
parameters in a full connection

◦ n× (d+ 1) parameters
◦ computational complexity is O(n× d)
◦ mainly used for universal function

approximation

nonlinear activation: y = φ(x)

◦ φ(·): ReLU, sigmoid or tanh
◦ no learnable parameter in this connection
◦ used to introduce nonlinearity

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Building Blocks to Connect Layers (II)

softmax
y = softmax(x)

where yi = exi∑n
j=1 exj

for all i

◦ no learnable parameter in this connection
◦ used to generate probability-like outputs

max-pooling

y = maxpool/m(x) (x ∈ Rn,y ∈ R
n
m)

◦ no learnable parameter in this connection
◦ used to reduce the layer size
◦ make the output less sensitive to small

translation variations

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Building Blocks to Connect Layers (III)

convolution:

y = x ∗w (x ∈ Rd, w ∈ Rf , y ∈ Rn)

where yj =
∑f

i=1wi × xj+i−1 (∀j)
◦ kernel w represents f learnable parameters
◦ computational complexity: O(d× f)
◦ output neurons are n = d− f + 1 but can

be adjusted by zero-padding and striding
◦ convolution vs. full connection

1 locality modelling: only capture a local
feature

2 weight sharing: f(< d) weights (vs. d× n
weights in full connection)

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Building Blocks to Connect Layers (IV)

normalization
◦ normalize the dynamic ranges of neurons
◦ smooth out the loss surface to facilitate

optimization

1 batch normalization: y = BNγ,β(x)

(1) normalize: x̂i =
xi − µB(i)√
σ2
B(i) + ε

(2) re-scaling : yi = γix̂i+βi

where µB(i) and σ2
B(i) denote the sample mean and the sample

variance over the current mini-batch

2 layer normalization: y = LNγ,β(x)
where local statistics are estimated over all dimensions in each
input vector x

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Building Blocks to Connect Layers (V)

time-delayed feedback

yt−1 = z−1(yt)

◦ z−1 indicates a time-delay unit, which is
physically implemented as a memory unit

◦ recurrent neural networks (RNNs) use
feedback to memorize the history

◦ feedback paths introduce circles in nets

tapped delay line
◦ stored in a line of memory units
◦ linearly combined to feed forward

ẑt =
∑L−1
i=0 ai ⊗ yt−i

where {ai} are learnable parameters
◦ no feedback path =⇒ non-recurrent

structures to memorize the history
supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Building Blocks to Connect Layers (V): Attention (1)

attention: use time-variant scalar
coefficients in tapped delay lines

1 tapped-delay-line is long enough to store
entire sequence

2 introduce an attention function g()

g(qt,kt)
∆
=
[
c0(t) c1(t) · · · cL−1(t)

]ᵀ
◦ qt ∈ Rl: query vector at time t
◦ kt ∈ Rl: key vector at time t

3 normalize to one by softmax

at = softmax
(
g(qt,kt)

)
4 linearly combined at each time t

ẑt =
∑L−1

i=0 ai(t)yt−i =
[
yt yt−1 · · · yt−L+1

]
at

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Building Blocks to Connect Layers (VI): Attention (2)

use a matrix form to represent attention for all time instances

value matrix: V =
[
yT yT−1 · · · y1

]
n×T

query matrix: Q
∆
=
[
qT qT−1 · · · q1

]
l×T

key matrix: K
∆
=
[
kT kT−1 · · · k1

]
l×T

attention in a compact form:

Ẑ = V softmax
(
g(Q,K)

)
where softmax is applied to g(Q,K) ∈ RT×T column-wise

attention represents a very flexible and complex computation
in neural networks, depending on how to choose the four
elements: V, Q, K and g(·)

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Case Study (I): Fully-Connected Deep Neural Networks (1)

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Case Study (I): Fully-Connected Deep Neural Networks (2)

Forward Pass of a fully-connected DNN

1 For the input layer: z0 = x

2 For each hidden layer l = 1, 2, · · · , L− 1:

al = W(l)zl−1 + b(l)

zl = ReLU(al)

3 For the output layer:

aL = W(L)zL−1 + b(L)

y = zL = softmax(aL)

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Case Study (II): Convolutional Neural Networks

convolutional neural networks (CNNs) are currently the
dominant model for images/videos

CNNs mainly rely on the basic convolution sum

extension #1: allow multiple feature plies in input

extension #2: allow multiple kernels

extension #3: allow multiple input dimensions

extension #4: stack many convolution layers

typical CNN architectures:
◦ AlexNet, VGG, ResNet, etc.

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

From Convolution Sum to CNNs (1)

extension #1: allow multiple feature plies in input x

each input position contains p feature
plies (e.g. R/G/B in color images)

extend kernel to p plies (p× f weights)

yj =

p∑
k=1

f∑
i=1

wi,k×xj+i−1,k (∀j = 1, 2, · · · , n)

y = x∗w (x ∈ Rp×d, w ∈ Rp×f , y ∈ Rn)

computational complexity: O(d · f · p)
zero-padding and striding

locality modeling, weight sharing

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

From Convolution Sum to CNNs (2)

extension #2: allow multiple kernels for more local features

a kernel captures only one local feature

extend to k kernels (p× f × k weights)

output is a k × n feature map

yj1,j2 =

p∑
i2=1

f∑
i1=1

wi1,i2,j2 × xj1+i1−1,i2

(∀j1 = 1, · · · , n; j2 = 1, · · · , k)

y = x∗w (x ∈ Rp×d, w ∈ Rp×f×k, y ∈ Rk×n)

computational complexity: O(d · f · p · k)

zero-padding and striding

locality modeling, weight sharing
supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

From Convolution Sum to CNNs (3)

extension #3: allow multiple input dimensions

expand input dimension to handle multi-dim data,
e.g. images (2D) and videos (3D)

for 2D images, each input x is a d× d× p tensor,
extend each kernel into an f × f × p tensor,
output is an n× n× k feature map

yj1,j2,j3 =

p∑
i3=1

f∑
i2=1

f∑
i1=1

wi1,i2,i3,j3×xj1+i1−1,j2+i2−1,i3

(j1 = 1, · · · , n; j2 = 1, · · · , n; j3 = 1, · · · , k)

y = x∗w (x ∈ Rd×d×p, w ∈ Rf×f×p×k, y ∈ Rn×n×k)

computational complexity: O(d2 · f2 · p · k)

locality modeling: capture 2D local features
supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

From Convolution Sum to CNNs (4)

extension #4: stack many convolution layers to form CNNs

stacked convolution layers: hierarchical visual feature extraction

fully-connected layers: a universal function approximator to map
these features to the target labels

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Convolutional Neural Networks (CNNs)

locality modelling =⇒ hierarchical
modeling

◦ recursively combine local features

◦ receptive fields in CNN: broaden in
upper layers

CNNs are dominant in image
classification, segmentation, generation

typical CNN architectures:

◦ AlexNet, VGG, ResNet, etc.

◦ ResNet: a very deep structure with
shortcut paths

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Case Study (III): Recurrent Neural Network (RNN)

use a simple RNN to process a sequence
of input vectors: {x1,x2, · · · ,xT }
for all t = 1, 2, · · · , T

at = W1

[
xt; ht−1

]
+ b1

ht = tanh(at)

yt = W2ht + b2

where W1, b1, W2 and b2 are all RNN
parameters

RNN generates an output sequence:
{y1,y2, · · · ,yT }

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Case Study (III): Recurrent Neural Network (RNN)

an RNN can be unfolded into a non-recurrent structure

RNNs fail to capture long-term dependency due to long
traversal paths in the deep structures

more effective RNN structures, e.g. LSTMs, GRUs, HORNNs

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Case Study (IV): Transformer (1)

use a particular attention mechanism to directly map an input
sequence to an output sequence

X =
[
xT · · · x2 x1

]
7−→ Z =

[
zT · · · z2 z1

]
1 choose query matrix Q, key matrix K and value matrix V as:

Q = AX K = BX V = CX

where A,B ∈ Rl×d; C ∈ Ro×d; Q,K ∈ Rl×T and V ∈ Ro×T

2 define the attention function as a bilinear function:

g(Q,K) = QᵀK (∈ RT×T)

3 transformer as attention:

Z =
(
CX

)
softmax

((
AX

)ᵀ(
BX

))
supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Case Study (IV): Transformer (2)

two enhancements:

1 use multiple
heads in each
transformer

2 stack more
transformer
layers to form
a deep
structure

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Case Study (IV): Transformer (3)

Multi-head Transformer

Choose d = 512, o = 64, a multi-head transformer will transform an
input sequence X ∈ R512×T into Y ∈ Rn×T :

multi-head transformer: use 8 sets of parameters
A(j),B(j) ∈ Rl×512,C(j) ∈ R64×512 (j = 1, 2, · · · , 8)

for j = 1, 2, · · · , 8:

Z(j) ∈ R64×T =
(
C(j)X

)
softmax

((
A(j)X

)ᵀ(
B(j)X

))
concatenate all heads: Z ∈ R512×T = concat

(
Z(1),Z(2), · · · ,Z(8)

)
apply nonlinearity: Y = feedforward

(
LNγ,β

(
X + Z

))
supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Learning Neural Networks

Loss Function

Optimization Method: SGD

Automatic Differentiation

◦ full connection
◦ nonlinear activation
◦ softmax
◦ max-pooling
◦ convolution
◦ normalization

Error Backpropagation Examples:

◦ fully-connected deep neural networks

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Loss Function

once network structure is determined, a neural network can be
viewed as a multivariate and vector-valued function as:

y = f(x;W)

where W to denote all network parameters

learn W from a training set of input-output pairs:

DN =
{

(x1, r1), (x2, r2), · · · , (xN , rN)
}

mean square error (MSE) for regression problems

QMSE(W;DN) =
∑N

i=1 ‖f(xi;W)− ri‖2

cross-entropy (CE) error for classification problems

QCE(W;DN) = −
∑N

i=1 ln
[
yi

]
ri

= −
∑N

i=1 ln
[
f(xi;W)

]
ri

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Optimization Method: mini-batch SGD

mini-batch SGD to learn neural networks

randomly initialize W(0); set η0, n = 0 and t = 0
while not converged do

randomly shuffle training data into mini-batches
for each mini-batch B do

for each x ∈ B do

compute the gradient: ∂Q(W(n) ;x)
∂W

end for
update model: W(n+1) = W(n) − ηt

|B|
∑

x∈B
∂Q(W(n) ;x)

∂W
n = n+ 1

end for
adjust ηt → ηt+1

t = t+ 1
end while

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Automatic Differentiation (I)

how to efficiently compute gradients for arbitrary networks?

automatic differentiation (AD), a.k.a. error back-propagation:

◦ the most efficient for any network structure by systematically
applying the chain rule

a simple example:

given any objective
function Q(·)

1 define the error signal: e = ∂Q
∂y

2 derive the gradient by local computations:

∂Q
∂w = ∂Q

∂y
∂y
∂w = e∂fw(x)

∂w

3 back-propagate the error signal:

∂Q
∂x = ∂Q

∂y
∂y
∂x = edfw(x)

dx

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Automatic Differentiation (II)

extend AD to a vector-input and
vector-output module:

compute two Jacobian matrices:

Jw =

[
∂yj
∂wi

]
k×n

Jx =

[
∂yj
∂xi

]
m×n

y =


y1

y2

...
yn

 x =


x1

x2

...
xm

 w =


w1

w2

...
wk



given the error signal e
∆
= ∂Q

∂y (∈ Rn)

1. local gradients:

∂Q
∂w = Jw e

2. back-propagation:

∂Q
∂x = Jx e

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Automatic Differentiation (III)

full connection from x ∈ Rd to output y ∈ Rn:

y = Wx + b

where W ∈ Rn×d and b ∈ Rn

◦ back-propagration:

Jx =

[
∂yj
∂xi

]
d×n

= Wᵀ =⇒ ∂Q

∂x
= Wᵀe

◦ local gradients:

∂Q

∂W
=


∂Q
∂y1

...
∂Q
∂yn

xᵀ = exᵀ ∂Q

∂b
= e

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Automatic Differentiation (III)

nonlinear activation from x (∈ Rn) to y (∈ Rn):

y = φ(x)

no learnable parameters =⇒ no local gradients

back-propagation:

∂Q

∂x
= Jxe = φ′(x)� e

where � denotes element-wise multiplication

◦ for ReLU activation: ∂Q
∂x = H(x)� e

◦ for sigmoid activation: ∂Q
∂x = l(x)�

(
1− l(x)

)
� e

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Automatic Differentiation (IV)

softmax: mapping an n-dimensional vector x (∈ Rn) into
another n-dimensional vector y inside the hypercube [0, 1]n,
with yj = exj∑n

i=1 exi
for all i = 1, 2, · · · , n

no learnable parameters =⇒ no local gradients
the Jacobian matrix

Jx =

[
∂yj
∂xi

]
n×n

=


y1(1− y1) −y1y2 · · · −y1yn
−y1y2 y2(1− y2) · · · −y2yn

...
...

...
...

−y1yn −y2yn · · · yn(1− yn)


n×n

back-propagation:
∂Q

∂x
= Jxe

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Automatic Differentiation (V): Convolution (1)

convolution: mapping an input vector x ∈ Rd to an output vector
y ∈ Rn by y = x ∗w with w ∈ Rf , with

yj =

f∑
i=1

wi × xj+i−1 j = 1, 2 · · · , n

the Jacobian matrix Jx:

Jx =

[
∂yj
∂xi

]
d×n

=



w1

w2 w1

...
...

. . .

wf wf−1

. . . w1

wf w2

. . .
...
wf


d×n

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Automatic Differentiation (V): Convolution (2)

back-propagation by convolution:

∂Q

∂x
= Jxe =


w1

∂Q
∂y1

w2
∂Q
∂y1

+ w1
∂Q
∂y2

...

wf
∂Q
∂yn


∆
= e(∅) ∗←−w

computing local gradients by convolution:

Jw =

[
∂yj
∂wi

]
f×n

=


x1 x2 · · · xn
x2 x3 · · · xn+1

...
...

. . .
...

xf xf+1 · · · xn+f−1


f×n

=⇒ ∂Q

∂w
= Jwe

∆
= x∗e

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Automatic Differentiation (V): Convolution (3)

extend to 2D convolutions

back-propagation by convolution:

∂Q

∂xi
=

k∑
j=1

ej
(∅) ∗←−wij (i = 1, 2 · · · p)

computing local gradient by convolution:

∂Q

∂wij
= xi∗ej (i = 1, 2 · · · p; j = 1, 2 · · · k)

where xi ∈ Rd×d and ej ∈ Rn×n

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Automatic Differentiation (VI)

max-pooling:

◦ no parameters =⇒ no local gradients
◦ back-propagation:

∂Q

∂xi
=

{
∂Q
∂yj

if i = ĵ

0 otherwise

batch normalization: y = BNγ,β(x)

◦ back-propagation:

∂Q

∂x(m) =
Mγ�e(m)−

∑M
k=1 γ�e(k)−γ�x̂(m)�

(∑M
k=1 e(k)�x̂(k)

)
M

√
σ2
B

(i)+ε

◦ local gradients:
∂Q
∂γ

=
∑M
k=1 x̂

(k) � e(k) ∂Q
∂β

=
∑M
k=1 e

(k)

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Error Backpropagation Example: Fully-Connected DNNs

all parameters:
W =

{
W(l),b(l) | l = 1, 2 · · ·L

}
the cross-entropy error:
Q(W;x) = − ln

[
y
]
r

=⇒

∂Q(W;x)

∂y
=
[
0 · · · 0 − 1

yr
0 · · · 0

]ᵀ
define error signals e(l) = ∂Q(W;x)

∂al
for all

l = L, · · · , 2, 1

apply AD to the softmax, nonlinear
activation and full connection modules to
back-propagate error signals

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Error Backpropagation Example: Fully-Connected DNNs

backward pass of fully-connected DNNs

for the cross-entropy error of any input-output pair (x, r)

1 for the output layer L:

e(L) =
[
y1 y2 · · · yr − 1 · · · yn

]ᵀ
2 for each hidden layer l = L− 1, · · · , 2, 1:

e(l) =
((

W(l+1)
)ᵀ
e(l+1)

)
�H(zl)

3 for all layers l = L, · · · , 2, 1:
∂Q(W;x)

∂W(l) = e(l)
(
zl−1

)ᵀ
∂Q(W ;x)

∂b(l) = e(l)

where y and zl (l = 0, 1, · · · , L− 1) are computed in the forward pass

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Heuristics and Tricks for Optimization

Hyperparmeters

Optimization Method: ADAM

Regularization

Fine-tuning Tricks

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Hyperparmeters of Learning Neural Networks

initial parameters

epoch number

mini-batch size

learning rate

◦ a good initial learning rate η0

◦ an annealing schedule to adjust ηt → ηt+1

◦ call for some self-adjusting mechanisms, e.g. Adagrad,
Adadelta, ADAM, AdaMax, etc.

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Optimization method: ADAM

ADAM to learn neural networks

randomly initialize W(0), and set η, t = 0, n = 0 and u0 = v0 = 0
while not converged do

randomly shuffle training data into mini-batches
for each mini-batch B do

for each x ∈ B do

compute ∂Q(W(n) ; x)
∂W

end for
gn = 1

|B|
∑

x∈B
∂Q(W(n) ; x)

∂W
un+1 = αun + (1− α)gn and vn+1 = β vn + (1− β)gn � gn
ûn+1 =

un+1

1−αn+1 and v̂n+1 =
vn+1

1−βn+1

update model: W(n+1) = W(n) − η · ûn+1 �
(

(v̂n+1 + ε2)−
1
2

)
n = n+ 1

end for
t = t+ 1

end while
supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Self-adjusting Mechanism in ADAM

use exponential average to accumulate 1st-order and
2nd-order moments (un and vn) of the gradient (gn)

normalize to yield unbiased estimates:

E
[
ûn+1(i)

]
= E

[
gn(i)

]
E
[
v̂n+1(i)

]
= E

[
g2
n(i)

]
model update formula:

W(n+1)
i = W(n)

i − η ûn+1(i)√
v̂n+1(i) + ε2

self-adjusting model updates ∆W(n)
i :

∥∥∆W(n)
i

∥∥2 ' η2

(
E
[
ûn+1(i)

])2
E
[
v̂n+1(i)

] =
η2
(
E
[
gn(i)

])2(
E
[
gn(i)

])2
+ var

[
gn(i)

]
supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Regularization in Neural Networks

weight decay: use L2 norm regularization

Q(W) +
λ

2
·
∥∥W∥∥2

=⇒ W(n+1) = W(n) − η ∂Q(W(n))

∂W
− λ ·W(n)

weight normalization: normalize weight vectors to facilitate
optimization

1. tied-scalar reparameterization:

w = γ · v s.t. ||v|| ≤ 1

2. normalizing reparameterization:

w = γ
||v||v

dropout

data augmentation

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Fine-tuning Tricks

critical to monitor three learning curves:

the objective function (a.k.a. loss
function)

performance on training data

performance on development data

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

End-to-End Learning

end-to-end learning: train a single model to map directly
from raw data to final targets

neural networks are suitable for end-to-end learning
◦ flexible architectures to accommodate a variety of raw data
◦ powerful enough to approximate potentially complex mapping
◦ arrange output structures to generate real data, e.g.

deconvolution layers for images, WaveNet for audio/speech

the popular encoder-decoder structure

sequence-to-sequence learning: learn deep neural networks
to map from one input sequence to an output sequence
◦ suitable for many NLP tasks, e.g. machine translation,

question-answering, etc.

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

Concepts Structures Learning Algorithms Optimization Tricks End-to-End Learning

Sequence-to-Sequence Learning

encoder and decoder are powerful neural networks that can
handle sequences, e.g. RNNs, LSTMs, or transformers

supplementary slides to Machine Learning Fundamentals c©Hui Jiang 2020 published by Cambridge University Press

Chapter 8

	Artificial Neural Networks
	Neural Network Structures
	Learning Algorithms for Neural Networks
	Heuristics and Tricks for Optimization
	End-to-End Learning

