Chapter 9 Ensemble Learning

supplementary slides to

Machine Learning Fundamentals

© Hui Jiang 2020

published by Cambridge University Press

August 2020

Outline

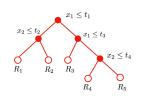
- 1 Formulation of Ensemble Learning
- 2 Bagging
- 3 Boosting

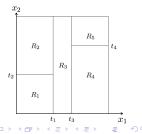
Ensemble Learning

- ensemble learning: combine multiple base models that are learned separately for the same task
- how to choose base models?
 - o neural networks, linear models, decision trees, etc.
- how to learn base models to ensure the diversity?
 - o re-sampling the training set, re-weighting training samples, etc.
- how to combine base models optimally?
 - bagging, boosting, stacking

Decision Trees (I)

- a popular non-parametric model for regression or classification tasks
- a tree-structured model:
 - \circ each non-terminal node is associated with a binary question regarding an input feature element x_i and a threshold t_j , e.g. $x_i \leq t_j$
 - \circ each leaf node represents a homogeneous region R_l in the input space
- each decision tree represents a particular partition of the input space
- decision trees are a highly interpretable machine learning method





Decision Trees (II)

00000

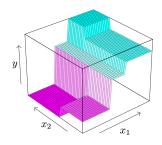
- fit a simple model to all y values in each region R_l
 - o regression: use a constant c_l for each R_l
 - classification: assign all \mathbf{x} in each R_l to one particular class
- approximate the unknown target function by a piece-wise constant function

$$y = f(\mathbf{x}) = \sum_{l} c_l I(\mathbf{x} \in R_l)$$

where

$$I(\mathbf{x} \in R_l) = \begin{cases} 1 & \text{if } \mathbf{x} \in R_l \\ 0 & \text{otherwise} \end{cases}$$

$$y = \bar{f}(\mathbf{x})$$



Decision Trees for Regression

- lacksquare a training set: $\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)}) \mid n = 1, 2, \cdots, N\}$
- construct the loss functional using a loss function $l(\cdot)$: $L(f;\mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} l(y^{(n)}, f(\mathbf{x}^{(n)})) = \frac{1}{N} \sum_{n=1}^{N} \left(y^{(n)} f(\mathbf{x}^{(n)})\right)^{2}$
- computationally infeasible to find the best partition to minimize the above loss
- \blacksquare use the greedy algorithm to recursively find an optimal split $x_i^* \leq t_j^*$ at a time

$$\left\{x_{i}^{*}, t_{j}^{*}\right\} = \arg\min_{x_{i}, t_{j}} \left[\sum_{\mathbf{x}^{(n)} \in \mathcal{D}_{l}} \left(y^{(n)} - c_{l}^{*}\right)^{2} + \sum_{\mathbf{x}^{(n)} \in \mathcal{D}_{r}} \left(y^{(n)} - c_{r}^{*}\right)^{2} \right]$$

where

$$\mathcal{D}_l = \left\{ (\mathbf{x}^{(n)}, y^{(n)}) \mid x_i^{(n)} \leq t_j \right\}, \ \mathcal{D}_r = \left\{ (\mathbf{x}^{(n)}, y^{(n)}) \mid x_i^{(n)} > t_j \right\},$$
 and c_t^* are the centroids of \mathcal{D}_l and \mathcal{D}_r

Decision Trees for Classification

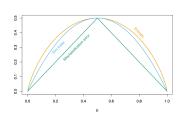
- classification problem involving K classes, i.e. $\{\omega_1, \omega_2, \cdots, \omega_K\}$
- p_{lk} $(k=1,2,\cdots,K)$: the portion of class k among all training samples assigned to leaf node l representing R_l

$$p_{lk} = \frac{1}{N_l} \sum_{\mathbf{x}^{(n)} \in R_l} I(y^{(n)} = \omega_k)$$

lacksquare all input f x in each region R_l is assigned to the majority class

$$k_l^* = \arg\max_k \ p_{lk}$$

• the criteria for the best split $\{x_i^*, t_i^*\}$



- $\begin{array}{l} \circ \quad \text{misclassification error:} \\ \frac{1}{N_l} \sum_{\mathbf{x}^{(n)} \in R_l} I(y^{(n)} \neq \\ \omega_{k_l^*}) = 1 p_{lk_l^*} \end{array}$
- Gini index: $1 \sum_{k=1}^{K} p_{lk}^2$
- \circ entropy: $-\sum_{k=1}^{K}p_{lk}\log(p_{lk})$

Bagging and Random Forests

- bagging stands for bootstrap aggregating
- bootstrapping (sampling with replacement) a training set into M subsets
- lacksquare use M bootstrap subsets to independently learn M models
- lacksquare combine M models by averaging or majority-voting
- random forests: use decision trees as base models in bagging
 - row sampling
 - column sampling
 - sub-optimal splitting
- random forests are much more powerful than decision trees

Boosting: Outline

- Gradient Boosting
- 2 AdaBoost
- Gradient Tree Boosting

Boosting

consider an additive model for ensemble learning

$$F_m(\mathbf{x}) = w_1 f_1(\mathbf{x}) + w_2 f_2(\mathbf{x}) + \dots + w_m f_m(\mathbf{x})$$

- lacksquare each base model $f_m(\mathbf{x}) \in \mathbb{H}$, then $F_m(\mathbf{x}) \in \mathsf{lin}(\mathbb{H}) \supseteq \mathbb{H}$
- lacktriangledown ensemble learning: \iff functional minimization

$$F_m(\mathbf{x}) = \arg\min_{f \in \mathsf{lin}(\mathbb{H})} \sum_{n=1}^N l(f(\mathbf{x}_n), y_n)$$

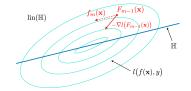
boosting: a sequential learning strategy to add a new base model to improve the current ensemble

$$F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + w_m f_m(\mathbf{x})$$

Gradient Boosting

• gradient boosting: estimate the new base model along the direction of the gradient at the current ensemble F_{m-1} :

$$\nabla l(F_{m-1}(\mathbf{x})) \stackrel{\Delta}{=} \frac{\partial l(f(\mathbf{x}), y)}{\partial f} \Big|_{f=F_{m-1}}$$



project the gradient into H:

$$f_m = \arg\max_{f \in \mathbb{H}} \langle f, -\nabla l(F_{m-1}(\mathbf{x})) \rangle$$

$$\langle f, g \rangle \stackrel{\Delta}{=} \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}_i) g(\mathbf{x}_i)$$

estimate the optimal weight:

$$w_m = \arg\min_{w} \sum_{n=1}^{N} l(F_{m-1}(\mathbf{x}_n) + w f_m(\mathbf{x}_n), y_n)$$

AdaBoost (I)

- apply gradient boosting to binary classification problems
- \mathbb{H} : all binary functions, i.e. $\forall f \in \mathbb{H}, f(\mathbf{x}) \in \{-1, +1\}$
- the exponential loss function: $l(F(\mathbf{x}), y) = e^{-yF(\mathbf{x})}$
- given a training set: $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)\}$, where $\mathbf{x}_n \in \mathbb{R}^d$ and $y_n \in \{-1, +1\}$
- the functional gradient:

$$\nabla l(F_{m-1}(\mathbf{x})) \stackrel{\triangle}{=} \frac{\partial l(f(\mathbf{x}), y)}{\partial f} \bigg|_{f=F_{m-1}} = -y e^{-yF_{m-1}(\mathbf{x})}$$

■ project into ℍ:

$$f_{m} = \arg \max_{f \in \mathbb{H}} \langle f, -\nabla l(F_{m-1}(\mathbf{x})) \rangle$$

$$= \arg \max_{f \in \mathbb{H}} \frac{1}{N} \sum_{n=1}^{N} y_{n} f(\mathbf{x}_{n}) e^{-y_{n} F_{m-1}(\mathbf{x}_{n})}$$

AdaBoost (II)

• denote $\alpha_n^{(m)} \stackrel{\Delta}{=} \exp(-y_n F_{m-1}(\mathbf{x}_n))$:

$$f_m = \arg \max_{f \in \mathbb{H}} \left[\sum_{y_n = f(\mathbf{x}_n)} \alpha_n^{(m)} - \sum_{y_n \neq f(\mathbf{x}_n)} \alpha_n^{(m)} \right]$$

$$= \arg \max_{f \in \mathbb{H}} \left[\sum_{n=1}^{N} \alpha_n^{(m)} - 2 \sum_{y_n \neq f(\mathbf{x}_n)} \alpha_n^{(m)} \right]$$

$$= \arg \min_{f \in \mathbb{H}} \sum_{y_n \neq f(\mathbf{x}_n)} \alpha_n^{(m)}$$

 \blacksquare normalize all weights as $\bar{\alpha}_n^{(m)} \stackrel{\Delta}{=} \frac{\alpha_n^{(m)}}{\sum_{n=1}^N \alpha_n^{(m)}}$, we have

$$f_m = \arg\min_{f \in \mathbb{H}} \sum_{y_n \neq f(\mathbf{x}_n)} \bar{\alpha}_n^{(m)}$$

AdaBoost (III)

 \blacksquare estimate f_m to minimize the weighted classification error:

$$\epsilon_m = \sum_{y_n \neq f_m(\mathbf{x}_n)} \bar{\alpha}_n^{(m)} \quad (0 \le \epsilon_m \le 1)$$

- replace the 0-1 loss function with a weighted loss function, where $\bar{\alpha}_n^{(m)}$ is treated as the loss if (\mathbf{x}_n, y_n) is misclassified
- estimate the optimal weight:

$$w_m = \arg\min_{w} \sum_{n=1}^{N} e^{-y_n \left(F_{m-1}(\mathbf{x}_n) + w f_m(\mathbf{x}_n) \right)}$$

$$\implies w_m = \frac{1}{2} \ln \left(\frac{\sum_{y_n = f_m(\mathbf{x}_n)} \bar{\alpha}_n^{(m)}}{\sum_{y_n \neq f_m(\mathbf{x}_n)} \bar{\alpha}_n^{(m)}} \right) = \frac{1}{2} \ln \left(\frac{1 - \epsilon_m}{\epsilon_m} \right)$$

AdaBoost (IV)

AdaBoost algorithm

```
input: \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}, where \mathbf{x}_n \in \mathbb{R}^d and y_n \in \{-1, +1\}
output: an ensemble model F_m(\mathbf{x})
    m=1 and F_0(\mathbf{x})=0
    initialize \bar{\alpha}_n^{(1)} = \frac{1}{N} for all n = 1, 2, \dots, N
    while not converged do
         learn a binary classifier f_m(\mathbf{x}) to minimize \epsilon_m = \sum_{u_m \neq f_m(\mathbf{x}_m)} \bar{\alpha}_n^{(m)}
         estimate ensemble weight: w_m = \frac{1}{2} \ln \left( \frac{1 - \epsilon_m}{\epsilon_m} \right)
         add to ensemble: F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + w_m f_m(\mathbf{x})
         \text{update } \bar{\alpha}_n^{(m+1)} = \frac{\bar{\alpha}_n^{(m)} e^{-y_n w_m f_m(\mathbf{x}_n)}}{\sum_{l=1}^{N} \bar{\alpha}_n^{(m)} e^{-y_n w_m f_m(\mathbf{x}_n)}} \text{ for all } n=1,2,\cdots,N
         m = m + 1
    end while
```

AdaBoost (V)

Theorem

If AdaBoost generates m base models with errors $\epsilon_1, \epsilon_2, \cdots, \epsilon_m$, the error of the ensemble model $F_m(\mathbf{x})$ is bounded as:

$$\varepsilon \le 2^m \prod_{t=1}^m \sqrt{\epsilon_t (1 - \epsilon_t)}$$

- combine many weak classifiers towards a strong classifier, i.e. $\varepsilon \to 0$ as $m \to \infty$ if all $\epsilon_t \neq \frac{1}{2}$ (better than random guessing)
- generalize well into unseen samples since it improves the margin distribution of training samples

Gradient Tree Boosting (I)

- apply gradient boosting to regression problems
- III: all decision trees
- use the square error as the loss functional:

$$l(f(\mathbf{x}), y) = \frac{1}{2}(f(\mathbf{x}) - y)^2$$

- \blacksquare the functional gradient: $\nabla l \big(F_{m-1}(\mathbf{x}) \big) = F_{m-1}(\mathbf{x}) y$
- lacksquare given a training set: $\mathcal{D}=\left\{(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\cdots,(\mathbf{x}_N,y_N)
 ight\}$
- project it to minimize:

$$f_{m} = \arg\min_{f \in \mathbb{H}} \| f + \nabla l(F_{m-1}(\mathbf{x})) \|^{2}$$

$$= \arg\min_{f \in \mathbb{H}} \sum_{n=1}^{N} \left(f(\mathbf{x}_{n}) - \underbrace{(y_{n} - F_{m-1}(\mathbf{x}_{n}))}_{\text{residual}} \right)^{2}$$

Gradient Tree Boosting (II)

gradient tree boosting: build a decision tree f_m to approximate the residuals, i.e. $y_n - F_{m-1}(\mathbf{x}_n)$, for all n

$$y = f_m(\mathbf{x}) = \sum_{l} c_{ml} I(\mathbf{x} \in R_{ml})$$

where c_{ml} is the mean of all residuals in the region R_{ml}

- a.k.a. gradient boosting machine (GBM), gradient boosted regression tree (GBRT)
- $lue{}$ use a pre-set "shrinkage" parameter u as the weight:

$$F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \nu f_m(\mathbf{x})$$

also applicable to multi-class classification problems

Gradient Tree Boosting (III)

Gradient Tree Boosting

```
input: \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)\}
output: an ensemble model F_m(\mathbf{x})
   fit a regression tree f_0(\mathbf{x}) to \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)\}
   F_0(\mathbf{x}) = \nu f_0(\mathbf{x})
   m=1
   while not converged do
       compute the negative gradients as pseudo outputs:
                      \tilde{y}_n = -\nabla l(F_{m-1}(\mathbf{x}_n)) for all n = 1, 2, \dots, N
       fit a regression tree f_m(\mathbf{x}) to \{(\mathbf{x}_1, \tilde{y}_1), \cdots, (\mathbf{x}_N, \tilde{y}_N)\}
       F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \nu f_m(\mathbf{x})
       m = m + 1
   end while
```