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Ensemble Learning

m ensemble learning: combine multiple base models that are
learned separately for the same task

m how to choose base models?
o neural networks, linear models, decision trees, etc.

m how to learn base models to ensure the diversity?
o re-sampling the training set, re-weighting training samples, etc.

m how to combine base models optimally?
o bagging, boosting, stacking
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Decision Trees (1)

m a popular non-parametric model for
regression or classification tasks
B a tree-structured model:

o each non-terminal node is associated
with a binary question regarding an
input feature element x; and a threshold
tj, e.g. T; S tj

o each leaf node represents a homogeneous
region R; in the input space

m each decision tree represents a particular
partition of the input space

m decision trees are a highly interpretable
machine learning method

R

R3
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Decision Trees (1)

m fit a simple model to all y values in each X Y
region Rl - ML model —
o regression: use a constant ¢; for each R;
o classification: assign all x in each R; to Y= f(x)

one particular class

m approximate the unknown target function
by a piece-wise constant function

y:f(x):chI(XERl) y e
where ‘
_ 1 if xeR
I(x € Ri) = { 0 otherwise
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Decision Trees for Regression

m a training set: D = {(x("),y(”)) ’ n=12--- ,N}
m construct the loss functional using a loss function I(-):
2
L(f;D) = % Yoy Wy™, Fx) = & S0, (v = F(x(™))
m computationally infeasible to find the best partition to
minimize the above loss

m use the greedy algorithm to recursively find an optimal split
z; < t;f at a time

{xl, ]} = arg:rcrj}t? [ Z (y(n) _ cl*)Q + Z (y(n) _ cﬁ)ﬂ
x(m) eD, x(") €D,

where
D, = {(x(”)7y(n)) ’ xl(n) < tj}, D, = {(X("),y(")) | acgn) > tj},
and ¢j and ¢} are the centroids of D; and D,

supplementary slides to Machine Learning Fundamentals © Hyi Jiang 2020 published by Cambridge University Press

Chapter 9



Formulation
0000®

Decision Trees for Classification

m classification problem involving K classes,
i.e. {wl,WQ, cee ,OJK}

m oy (k=1,2,---, K): the portion of class
k among all training samples assigned to
leaf node [ representing R;

02 03 o4 o5

00 01

1 n
Pk = 57 > Iy™ =wy)

x(MeR, o misclassification error:
N Dxmen, IG™ #
m all input x in each region R; is assigned wir) =1 — pugr
to the majority class o Giniindex: 1— 3,7, pix
k? = argmaxg pik o entropy:
m the criteria for the best split {x;f,t;‘} — ey puk log(pu)

[G)
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Bagging and Random Forests

m bagging stands for bootstrap aggregating

bootstrapping (sampling with replacement) a training set into
M subsets

m use M bootstrap subsets to independently learn M models

combine M models by averaging or majority-voting

m random forests: use decision trees as base models in bagging

o row sampling
o column sampling
o sub-optimal splitting

m random forests are much more powerful than decision trees
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Boosting: Outline

Gradient Boosting

AdaBoost

Gradient Tree Boosting
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Boosting

m consider an additive model for ensemble learning

Fin(x) = w1 fi(x) +wz fo(x) + -+ + W frn(x)

m each base model f,,,(x) € H, then F,,,(x) € lin(H) O H

m ensemble learning: <= functional minimization

F(x) = femhlnnH) Zl( )

m boosting: a sequential learning strategy to add a new base
model to improve the current ensemble

Fm(x) = mel(x) + W, fm(x)
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Gradient Boosting

m gradient boosting: estimate the new base
model along the direction of the gradient

at the current ensemble F,,_1: ) faw).
VI(Fn i (x))
s A(f(x)sy \
Vi(Fn-1(x)) = (8f) :
=t N i)

m project the gradient into H: L
é ~ X X
fm = argmax (f,=VI(Fn-1(x)) (f,9) = NZ f(xi)g(x:)

m estimate the optimal weight:

Wy, = argmin,, Zi:le l(mel(Xn) + wfm(xn)v yn)
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AdaBoost ()

apply gradient boosting to binary classification problems
H: all binary functions, i.e. Vf € H, f(x) € {—1,+1}
the exponential loss function: I(F(x),y) = e ¥/
given a training set: D = {(Xl,yl), (x2,92), - ,(xN,yN)},
where x,, € R? and y,, € {—1,+1}
the functional gradient:
A 3l(f(X)7y)‘
Of = l=ruos

VI(Fpn-1(x)) — _yeYFmo1(®)

project into H:

Jm = argmax (f,=VI(En-1(x)))

N
1
_ § ' —YnFm_1(xn)
argr?gﬁ( N n:1ynf(Xn)€
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AdaBoost (II)

m denote o™ 2 exp(—ynFn—1(xn)):

yn:f(xn) Yn #f(xn)

N
= argmaﬁ({Za%m)—Q Z a%m)}
e L= un#F (xn)
= argmin Z alm

H
€ ynZf(xn)

) ) _ A
m normalize all weights as oz%m) = —% ____ we have
ol

n=1

fm = argmin Z alm
YnFf(xn)
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AdaBoost (I11)

m estimate f,;, to minimize the weighted classification error:

€m = Z 077(17”) 0<e,<1)
yn#fm(xn)
m replace the 0-1 loss function with a weighted loss function,
where @;m) is treated as the loss if (X, yn) is misclassified
m estimate the optimal weight:

N
W = argmin 3 eV (Fn1 Gen) 4w fin () )
n=1
L (e @ 1 (1—en
:>wm21n( noeman ()>2ln< )
—\m 6771,
Zyvﬁ‘éfm(xn) Gn
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AdaBoost (IV)

aBoost algorithm

input: {(x1,y1), -, (xn,yn)}, where x,, € R? and y,, € {—1,+1}
output: an ensemble model Fp, (x)

=1 and Fo(x) =0
|n|t|al|ze ad) = +foralln=1,2,--- N
while not converged do

learn a binary classifier f,,(x) to minimize €, = Zyn$£f7n(xn) aSZ”

2 €m

add to ensemble: Fi,(x) = Fin—1(X) + Wi fm (%)

f( ) o —Ynwm fm (Xn)
update amty — = e forallm=1,2,--- ,N
Zﬁ] la" *ynwmfm(xn)

estimate ensemble weight: w,, = = In (m

m=m-++1
end while
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AdaBoost (V)

If AdaBoost generates m base models with errors €1, €2, -+ , €,
the error of the ensemble model F,,(x) is bounded as:

m combine many weak classifiers towards a strong classifier, i.e.
e —0asm — oo if all ¢ # & (better than random guessing)

m generalize well into unseen samples since it improves the
margin distribution of training samples
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Gradient Tree Boosting (1)

m apply gradient boosting to regression problems
m H: all decision trees
m use the square error as the loss functional:

(f(x)y) = 5(f(x) — )

2

m the functional gradient: VI(F,_1(x)) = Fp_1(x) — y
m given a training set: D = {(x1,1), (X2,92), - » (XN, ynN) }
B project it to minimize:

S = argmin || f+ VI(Fpo1(x)) I°

_ argr}leiﬁ zlj: (f(xn) — (yn — Frn-1(x0)) )2

residual
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Gradient Tree Boosting (I1)

m gradient tree boosting: build a decision tree f;, to
approximate the residuals, i.e. y, — F,,_1(x,), for all n

Yy = fm(x) = Zcml I(X € le)
l

where ¢,,,; is the mean of all residuals in the region R,

m a.k.a. gradient boosting machine (GBM), gradient boosted
regression tree (GBRT)

B use a pre-set "shrinkage” parameter v as the weight:
Fin(x) = Fn—1(x) + v fm(x)

m also applicable to multi-class classification problems
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Gradient Tree Boosting (I11)

Gradient Tree Boosting

inPUt: {<X1791>7 <X2ay2)7 ST (XvaN)}
output: an ensemble model F},(x)

fit a regression tree fo(x) to {(x1,1), (x2,¥2), -, (Xn,yn)}
Fo(x) = v fo(x)
m=1

while not converged do
compute the negative gradients as pseudo outputs:
Un = —Vl(Fm,l(xn)) foralln=1,2,--- ,N

fit a regression tree f,,(x) to {(x1,%1), -, (xn,9n)}
Fin(x) = Fn1(x) + vfim(x)
m=m+1

end while
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