
Hui Jiang 
Department of Electrical Engineering and Computer Science  
Lassonde School of Engineering, York University, CANADA 

Why Deep Neural Network 
Works for Speech Recognition? 

Joint work with Y. Bao, J. Pan, O. Abdel-Hamid 



Outline 
•  Introduction 

o  Automatic Speech Recognition (ASR) 
o  Deep Neural Network (DNN) 

• DNN/HMM for Speech 

• Bottleneck Features 

•  Incoherent Training 

• Conclusions 



Introduction: ASR History 
•  ASR formulation:  

o  GMM/HMM + n-gram + Viterbi search 

•  Technical advances (incremental) over past 10 years: 
o  Adaptation (speaker/environment): 5% rel. gain 
o  Discriminative Training: 5-10% rel. gain 
o  Feature normalization: 5% rel. gain 
o  ROVER:  5% rel. gain 

•  More and more data  better and better accuracy 
o  read speech (>90%),  telephony speech (>70%)  
o  meeting/voicemail recording (<60%) 



Acoustic Modeling: Optimization 
•  Acoustic modeling  large-scale optimization 

o   2000+ hour data          GMMs/HMM 
        billions of samples     10+ million free parameters 
 

•  Training Methods 
o  Maximum Likelihood Estimation (MLE)  
o  Discriminative Training (DT) 

•  Engineering Issues 
o  Efficiency:  feasible with 100-1000 of CPUs 
o  Reliability:  robust estimation of all parameters 



Neural Network for ASR 
•  1990s:  MLP for ASR (Bourlard and Morgan, 1994) 

o  NN/HMM hybrid model (worse than GMM/HMM) 

•  2000s: TANDEM (Hermansky, Ellis, et al., 2000) 
o  Use MLP as Feature Extraction (5-10% rel. gain) 

•  2006:  DNN for small tasks (Hinton et al., 2006) 
o  RBM-based pre-training for DNN 

•  2010: DNN for small-scale ASR (Mohamed, Yu, et al. 2010) 
•  2011: DNN for large-scale ASR 

o  Over 30% rel. gain in Switchboard (Seide et al., 2011)  



Deep Neural Network (DNN)!



DNN Training (I)  
Given a training set  X={xt, lt, t =1, 2T}, optimize the objective function:

Q(W) = Qt (W) =
t=1

T

∑ −δ (lt − i) ⋅ lnyi (xt,W)[ ]
i=1

N

∑
t=1

T

∑

Define error signals in each layer etk
(l ) = ∂

∂ak
(l ) Qt (W ) = −1

ylt (xt,W)
∂ylt (xt,W)

∂ak
(l )

Softmax layer l=L+1 

Sigmoid layer l=1,2,…,L 

etk
(l ) = ∂Qt (W )

∂ak
(l ) = ∂Qt (W )

∂aj
(l+1)

∂aj
(l+1)

∂ak
(l )

j=1

N

∑ = etj
(l+1)

j=1

N

∑ ∂aj
(l+1)

∂ak
(l ) = etj

(l+1) ⋅ zk
(l ) ⋅(1−

j=1

N

∑ zk
(l ) ) ⋅Wkj

(l+1)

= zk
(l ) ⋅(1− zk

(l ) ) ⋅ etj
(l+1)

j=1

N

∑ Wjk
(l+1)

etk
(L+1) = −1

ylt (xt,W)
∂ylt (xt,W)
∂ak

(L+1) = yk −δ (lt − k)



DNN Training (II) 
Given a training set  X={xt, lt, t =1, 2T}

Q(W) = − Qt (W) =
t=1

T

∑ − δ (lt − i) ⋅ lnyi (xt,W)
i=1

N

∑
t=1

T

∑

∂
∂wk

(l ) Qt (W) =
∂Qt (W)
∂ak

(l )
∂ak

(l )

∂wk
(l ) = etk

(l ) ⋅zt
(l−1)

wk
(l ) ←wk

(l ) −η ∂
∂wk

(l ) Qt (W) = wk
(l ) −η ⋅etk

(l ) ⋅zt
(l−1)

Use stochastic gradient Descent (SGD) to update weight vectors: 



NN for ASR: old and new 
•  Deeper network 

more hidden layers 
  ( 1  6-7 layers)    

• Wider network 
More hidden nodes 
More output nodes 
   (100  5-10 K ) 

•  More data 
10-20 hours  300 to 10k+ 
hours of training data 



ASR Frontend 

Feature Extraction (Linear Prediction, Filter Bank) 

waveform 

Feature vectors 

sliding window 

Audio Segmentation  Speech Recognition 

speech/music/noise words 

Audio/speech coding  

bit stream for transmission 



Short-time Analysis 

waveform 

Feature vectors 

sliding window 



Short-time Analysis 

waveform 

Feature vectors 

sliding window 



Short-time Analysis 

waveform 

Feature vectors 

sliding window 



Short-time Analysis 

waveform 

Feature vectors 

sliding window 



ASR Frontend: GMM/HMM 

waveform 

Feature vectors 

sliding window 



ASR Frontend: NN/HMM 

waveform 

Feature vectors 

sliding window 

… 

… 



GMMs/HMM vs. DNN/HMM 
• Different acoustic models 

o GMMs vs. DNN 

• Different feature vectors 
o  1 frame vs. concatenated frames (11-15 frames) 

vs.  
… 

… 



Experiment (I): 
GMMs/HMM vs. DNN/HMM 

•  In-house 70-hour Mandarin ASR task;  
•  GMM: 4000 tied HMM states, 30 Gaussians per state 
•  DNN:  pre-trained; 1024 nodes per layer; 1-6 hidden layers 

Numbers in word error rates (%) 
NN-1:  1 hidden layer;   DNN-6: 6 hidden layers 
MPE-GMM: discriminatively trained GMM/HMM 

Context window NN-1 DNN-6 MPE-GMM 
1 18.0 17.0 16.7 

Context window 3 5 7 
DNN-6 14.2 13.7 13.5 

Context window 9 11 13 

DNN-6 13.5 13.4 13.6 



Experiment (II): 
GMMs/HMM vs. DNN/HMM 

•  300-hour Switchboard task, Hub5e01 test set 
•  GMM: 8991 tied HMM states, 40 Gaussian per state 
•  DNN:  pre-trained; 2048 nodes per layer; 1-5 hidden layers 
 Word error rates (WER) in Hub01 test set (%) 

NN-1: 1 hidden layer;   DNN-3/5: 3/5 hidden layers 
MPE-GMM: discriminatively trained GMM/HMM 

context 
window 

MPE 
GMM 

NN-1 DNN-3 DNN-5 

1 32.8% 35.4% 34.8% 33.1% 

11 n/a 31.4% 25.6% 23.7% 



Conclusions (I) 
•  The gain of DNN/HMM hybrid is almost entirely attributed 

to the concatenated frames.  
o  The concatenated features contain almost all 

additional information resulting in the gain. 
 
o But they are highly correlated. 

• DNN is powerful to leverage highly correlated features. 
 



What’s next 
• How about GMM/HMM?  
• Hard to explore highly correlated features in GMMs. 

o Requires dimensional reduction for de-correlation. 
•  Linear dimensional reduction (PCA, LDA, KLT, …) 

o  Failed to compete with DNN. 
• Nonlinear dimensional reduction 

o Using NN/DNN (Hinton et al.), a.k.a. bottleneck features 
o Manifold learning, LLE, MDS, SNE, …? 



Bottleneck (BN) Feature  



Experiments: BN vs. DNN 
300-hour English Switchboard Task (WER in %) 

MLE: maximum likelihood estimation; MPE: discriminative training 
ReFA: realigned class labels; DT: sequence training of DNNs 

DT+BN: BN features extracted from sequence-trained BN networks  
     Acoustic models (Features) Hub5e01 Hub5e00 

MLE MPE MLE MPE 

GMM-HMMs (PLP) 35.4% 32.8% 28.7% 24.7% 

GMM-HMMs (BN) 26.0% 23.2% 17.9% 15.9% 

DNN  (11 PLPs) 23.7% 16.7% 

DNN (ReFA+DT) -- 14.0% 

GMM-HMMs (DT+BN) -- 16.6% 14.6% 



Incoherent Training 
• Bottleneck (BN) works but: 

o BN hurts DNN performance a little 
o  Increasing BN   correlation up 

• Can we do better? 

•  The Idea: embedding de-correlation into 
back-propagation of DNN training. 
o De-correlation by constraining 

columns of weight matrix W 
o How to constrain? 

 



Incoherent Training 
• Define coherence of DNN weight matrix W as: 

 
 
• A matrix with smaller coherence indicates all of its 

column vectors are less similar. 
• Approximate coherence using soft-max: 
 

GW =max
i, j

gij =maxi, j

wi ⋅wj

wi wj

GW



Incoherent Training 
• All DNN weight matrices are optimized by minimizing a 

regularized objective function: 
 
 
• Derivatives of coherence: 

• Back-propagation is still applicable… 

F (new) = F (old ) +α ⋅max
W

GW

∂GW

∂wk



Incoherent Training: 
De-correlation 

Applying incoherent training to one weight matrix in BN 



Incoherent Training: 
Data-driven 

•  If only applying to one weight matrix W: 

• Covariance matrix of Y:    

• Directly measure correlation coefficients based on the 
above covariance matrix:  

          with 
   Cx is estimate from one mini-batch each time 
 

GW =max
i≠ j

gij

Y =WTX + b

CY =WTCXW



Incoherent Training: 
Data-driven 

• After soft-max, Derivatives can be computed as: 

 
     where 
 
 
 
• Back-propagation still applies except Cx is computed 

for each mini-batch 

∂GW

∂wk



Incoherent Training: 
Data-driven De-correlation 

When applying Incoherent Training to one weight matrix 



Experiment: Incoherent Training 

300-hour English Switchboard Task, WER (%) on Hub5e01 
DNN: 6 hidden layers of 2048 nodes 

BN: extracted from 5 hidden layers of bottleneck DNN 

BN Feature / models MLE MPE 
DNN 23.7% 

Baseline BN 26.0% 23.2% 
Weight-Matrix Incoherent BN 25.7% -- 

Mini-batch-data Incoherent BN 25.6% 22.8% 



Conclusions (II) 
• Possible to compete with DNN under the traditional 

GMMs/HMM framework. 
• Promising to use bottleneck features learned from the 

proposed incoherent training. 
• Benefits over DNN/HMM: 

o Slightly better performance 
o Enjoy other ASR techniques (adaptation, …) 
o  Faster training process 
o  Faster decoding process 



Future Work 
• Apply incoherent training to general DNN 

learning. 

• Consider other nonlinear dimensional 
reduction methods for concatenated features. 

 



Other Ongoing DNN Projects 

• Convolutional neural network (CNN) for ASR 

• Rapid adaptation of DNNs 

• Parallel training of DNNs  


