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Introduction: ASR History 
•  ASR formulation:  

o  GMM/HMM + n-gram + Viterbi search 

•  Technical advances (incremental) over past 10 years: 
o  Adaptation (speaker/environment): 5% rel. gain 
o  Discriminative Training: 5-10% rel. gain 
o  Feature normalization: 5% rel. gain 
o  ROVER:  5% rel. gain 

•  More and more data  better and better accuracy 
o  read speech (>90%),  telephony speech (>70%)  
o  meeting/voicemail recording (<60%) 



Acoustic Modeling: Optimization 
•  Acoustic modeling  large-scale optimization 

o   2000+ hour data          GMMs/HMM 
        billions of samples     10+ million free parameters 
 

•  Training Methods 
o  Maximum Likelihood Estimation (MLE)  
o  Discriminative Training (DT) 

•  Engineering Issues 
o  Efficiency:  feasible with 100-1000 of CPUs 
o  Reliability:  robust estimation of all parameters 



Neural Network for ASR 
•  1990s:  MLP for ASR (Bourlard and Morgan, 1994) 

o  NN/HMM hybrid model (worse than GMM/HMM) 

•  2000s: TANDEM (Hermansky, Ellis, et al., 2000) 
o  Use MLP as Feature Extraction (5-10% rel. gain) 

•  2006:  DNN for small tasks (Hinton et al., 2006) 
o  RBM-based pre-training for DNN 

•  2010: DNN for small-scale ASR (Mohamed, Yu, et al. 2010) 
•  2011: DNN for large-scale ASR 

o  Over 30% rel. gain in Switchboard (Seide et al., 2011)  



Deep Neural Network (DNN)!



DNN Training (I)  
Given a training set  X={xt, lt, t =1, 2T}, optimize the objective function:
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DNN Training (II) 
Given a training set  X={xt, lt, t =1, 2T}
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Use stochastic gradient Descent (SGD) to update weight vectors: 



NN for ASR: old and new 
•  Deeper network 

more hidden layers 
  ( 1  6-7 layers)    

• Wider network 
More hidden nodes 
More output nodes 
   (100  5-10 K ) 

•  More data 
10-20 hours  300 to 10k+ 
hours of training data 



ASR Frontend 

Feature Extraction (Linear Prediction, Filter Bank) 

waveform 

Feature vectors 

sliding window 

Audio Segmentation  Speech Recognition 

speech/music/noise words 

Audio/speech coding  

bit stream for transmission 



Short-time Analysis 
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Short-time Analysis 
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ASR Frontend: GMM/HMM 

waveform 

Feature vectors 

sliding window 



ASR Frontend: NN/HMM 

waveform 

Feature vectors 

sliding window 

… 

… 



GMMs/HMM vs. DNN/HMM 
• Different acoustic models 

o GMMs vs. DNN 

• Different feature vectors 
o  1 frame vs. concatenated frames (11-15 frames) 

vs.  
… 

… 



Experiment (I): 
GMMs/HMM vs. DNN/HMM 

•  In-house 70-hour Mandarin ASR task;  
•  GMM: 4000 tied HMM states, 30 Gaussians per state 
•  DNN:  pre-trained; 1024 nodes per layer; 1-6 hidden layers 

Numbers in word error rates (%) 
NN-1:  1 hidden layer;   DNN-6: 6 hidden layers 
MPE-GMM: discriminatively trained GMM/HMM 

Context window NN-1 DNN-6 MPE-GMM 
1 18.0 17.0 16.7 

Context window 3 5 7 
DNN-6 14.2 13.7 13.5 

Context window 9 11 13 

DNN-6 13.5 13.4 13.6 



Experiment (II): 
GMMs/HMM vs. DNN/HMM 

•  300-hour Switchboard task, Hub5e01 test set 
•  GMM: 8991 tied HMM states, 40 Gaussian per state 
•  DNN:  pre-trained; 2048 nodes per layer; 1-5 hidden layers 
 Word error rates (WER) in Hub01 test set (%) 

NN-1: 1 hidden layer;   DNN-3/5: 3/5 hidden layers 
MPE-GMM: discriminatively trained GMM/HMM 

context 
window 

MPE 
GMM 

NN-1 DNN-3 DNN-5 

1 32.8% 35.4% 34.8% 33.1% 

11 n/a 31.4% 25.6% 23.7% 



Conclusions (I) 
•  The gain of DNN/HMM hybrid is almost entirely attributed 

to the concatenated frames.  
o  The concatenated features contain almost all 

additional information resulting in the gain. 
 
o But they are highly correlated. 

• DNN is powerful to leverage highly correlated features. 
 



What’s next 
• How about GMM/HMM?  
• Hard to explore highly correlated features in GMMs. 

o Requires dimensional reduction for de-correlation. 
•  Linear dimensional reduction (PCA, LDA, KLT, …) 

o  Failed to compete with DNN. 
• Nonlinear dimensional reduction 

o Using NN/DNN (Hinton et al.), a.k.a. bottleneck features 
o Manifold learning, LLE, MDS, SNE, …? 



Bottleneck (BN) Feature  



Experiments: BN vs. DNN 
300-hour English Switchboard Task (WER in %) 

MLE: maximum likelihood estimation; MPE: discriminative training 
ReFA: realigned class labels; DT: sequence training of DNNs 

DT+BN: BN features extracted from sequence-trained BN networks  
     Acoustic models (Features) Hub5e01 Hub5e00 

MLE MPE MLE MPE 

GMM-HMMs (PLP) 35.4% 32.8% 28.7% 24.7% 

GMM-HMMs (BN) 26.0% 23.2% 17.9% 15.9% 

DNN  (11 PLPs) 23.7% 16.7% 

DNN (ReFA+DT) -- 14.0% 

GMM-HMMs (DT+BN) -- 16.6% 14.6% 



Incoherent Training 
• Bottleneck (BN) works but: 

o BN hurts DNN performance a little 
o  Increasing BN   correlation up 

• Can we do better? 

•  The Idea: embedding de-correlation into 
back-propagation of DNN training. 
o De-correlation by constraining 

columns of weight matrix W 
o How to constrain? 

 



Incoherent Training 
• Define coherence of DNN weight matrix W as: 

 
 
• A matrix with smaller coherence indicates all of its 

column vectors are less similar. 
• Approximate coherence using soft-max: 
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Incoherent Training 
• All DNN weight matrices are optimized by minimizing a 

regularized objective function: 
 
 
• Derivatives of coherence: 

• Back-propagation is still applicable… 

F (new) = F (old ) +α ⋅max
W

GW

∂GW

∂wk



Incoherent Training: 
De-correlation 

Applying incoherent training to one weight matrix in BN 



Incoherent Training: 
Data-driven 

•  If only applying to one weight matrix W: 

• Covariance matrix of Y:    

• Directly measure correlation coefficients based on the 
above covariance matrix:  

          with 
   Cx is estimate from one mini-batch each time 
 

GW =max
i≠ j

gij

Y =WTX + b

CY =WTCXW



Incoherent Training: 
Data-driven 

• After soft-max, Derivatives can be computed as: 

 
     where 
 
 
 
• Back-propagation still applies except Cx is computed 

for each mini-batch 

∂GW

∂wk



Incoherent Training: 
Data-driven De-correlation 

When applying Incoherent Training to one weight matrix 



Experiment: Incoherent Training 

300-hour English Switchboard Task, WER (%) on Hub5e01 
DNN: 6 hidden layers of 2048 nodes 

BN: extracted from 5 hidden layers of bottleneck DNN 

BN Feature / models MLE MPE 
DNN 23.7% 

Baseline BN 26.0% 23.2% 
Weight-Matrix Incoherent BN 25.7% -- 

Mini-batch-data Incoherent BN 25.6% 22.8% 



Conclusions (II) 
• Possible to compete with DNN under the traditional 

GMMs/HMM framework. 
• Promising to use bottleneck features learned from the 

proposed incoherent training. 
• Benefits over DNN/HMM: 

o Slightly better performance 
o Enjoy other ASR techniques (adaptation, …) 
o  Faster training process 
o  Faster decoding process 



Future Work 
• Apply incoherent training to general DNN 

learning. 

• Consider other nonlinear dimensional 
reduction methods for concatenated features. 

 



Other Ongoing DNN Projects 

• Convolutional neural network (CNN) for ASR 

• Rapid adaptation of DNNs 

• Parallel training of DNNs  


