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This talk is based on the following two papers: 
[1] J. Pan, C. Liu, Z. Wang, Y. Hu and H. Jiang, ``Investigations of Deep Neural Networks for Large Vocabulary Continuous Speech Recognition", 
Proc. of International Symposium on Chinese Spoken Language Processing (ISCSLP'2012), Hong Kong, December 2012. 
[2] Y. Bao, H. Jiang, L. Dai, C. Liu, “Incoherent Training of Deep Neural Networks to De-correlated Bottleneck Features for Speech Recognition," 
submitted to 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'13), Vancouver, Canada. 



Introduction: ASR History 
• ASR formulation:  

o GMM/HMM + n-gram + Viterbi search 

•  Technical advances (incremental) over past 10 years: 
o Adaptation (speaker/environment): 5% rel. gain 
o Discriminative Training: 5-10% rel. gain 
o  Feature normalization: 5% rel. gain 
o ROVER:  5% rel. gain 

• More and more data  better and better accuracy 
o  read speech (>90%),  telephony speech (>70%)  
o meeting/voicemail recording (<60%) 



Acoustic Modeling: Optimization 
• Acoustic modeling  large-scale optimization 

o   2000+ hour data          GMMs/HMM 
        billions of samples     100+ million free parameters 
 
•  Training Methods 

o Maximum Likelihood Estimation (MLE)  
o Discriminative Training (DT) 

• Engineering Issues 
o Efficiency:  feasible with 100-1000 of CPUs 
o Reliability:  robust estimation of all parameters 



Neural Network for ASR 
•  1990s:  MLP for ASR (Bourlard and Morgan, 1994) 

o NN/HMM hybrid model (worse than GMM/HMM) 

•  2000s: TANDEM (Hermansky, Ellis, et al., 2000) 
o  Use MLP as Feature Extraction (5-10% rel. gain) 

•  2006:  DNN for small tasks (Hinton et al., 2006) 
o RBM-based pre-training for DNN 

•  2010: DNN for small-scale ASR (Mohamed, Yi, et al. 2010) 

•  2011: DNN for large-scale ASR 
o Over 30% rel. gain in Switchboard (Seide et al., 2011)  



ASR Frontend 

Feature Extraction (Linear Prediction, Filter Bank) 

waveform 

Feature vectors 

sliding window 

Audio Segmentation  Speech Recognition 

speech/music/noise words 

Audio/speech coding  

bit stream for transmission 
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ASR Frontend: GMM/HMM 
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ASR Frontend: NN/HMM 

waveform 

Feature vectors 

sliding window 

… 

… 



NN for ASR: old and new 
• Deeper network 

more hidden layers 
  ( 1  6-7 layers)  

    
• Wider network 

More hidden nodes 
More output nodes 
   (100  5-10 K ) 

• More data 
10-20 hours  2-10 k 
hours training data 



GMMs/HMM vs. DNN/HMM 
• Different acoustic models 

o GMMs vs. DNN 

• Different feature vectors 
o  1 frame vs. concatenated frames (11-15 frames) 

vs.  
… 

… 



Experiment (I): 
GMMs/HMM vs. DNN/HMM 

•  70-hour Chinese ASR task; 4000 tied HMM states 
• GMM: 30 Gaussians per state 
• DNN:  pre-trained; 1024 nodes per layer; 1-6 hidden layers 

Numbers in word error rates (%) 
NN-1:  1 hidden layer; DNN-6: 6 hidden layers 
MPE GMM: discriminatively trained GMM/HMM 



Experiment (II): 
GMMs/HMM vs. DNN/HMM 

•  320-hour English Switchboard task; 9000 tied HMM states 
• GMM: 40 Gaussian per state 
• DNN:  pre-trained; 2000 nodes per layer; 1-5 hidden layers 
 Numbers in word error rates (%) 

NN-1:  1 hidden layer; DNN-3/5: 3/5 hidden layers 
MPE GMM: discriminatively trained GMM/HMM 



Conclusions (I) 
•  The gain of DNN/HMM hybrid is almost entirely attributed 

to the concatenated frames.  
 

o  The concatenated features contain almost all 
additional information resulting in the gain. 

 
o But they are highly correlated. 

• DNN is powerful to leverage highly correlated features. 
 



What’s next 
• How about GMM/HMM?  

• Hard to explore highly correlated features in GMMs. 
o Requires dimensional reduction for de-correlation. 

•  Linear dimensional reduction (PCA, LDA, KLT, …) 
o  Failed to compete with DNN. 

• Nonlinear dimensional reduction 
o Using NN/DNN (Hinton et al.), a.k.a. bottleneck features 
o Manifold learning, LLE, MDS, SNE, …? 



Bottleneck (BN) Feature  



Experiment (I): 
Bottleneck(BN) Features 

70-hour Chinese ASR Task (word error rate in %) 
MLE: maximum likelihood estimation 

MPE: discriminative training 



Experiment (II): 
Bottleneck Features (BN) 

320-hour English Switchboard Task (word error rate in %) 
MLE: maximum likelihood estimation 

MPE: discriminative training 



Incoherent Training 
• Bottleneck (BN) works but: 

o BN hurts DNN performance a little 
o  Increasing BN   correlation up 

• Can we do better? 
 

•  The Idea: embedding de-correlation into 
back-propagation of DNN training. 

o De-correlation by constraining 
columns of weight matrix W 

o How to constrain? 
 



Incoherent Training 
• Define coherence of DNN weight matrix W as: 

 
• A matrix with smaller coherence indicates all of its 

column vectors are less similar. 

• Approximate coherence using soft-max: 
 

GW =max
i, j

gij =maxi, j

wi ⋅wj

wi wj

GW



Incoherent Training 
• All DNN weight matrices are optimized by minimizing a 

regularized objective function: 

 
• Derivatives of coherence: 

• Back-propagation is still applicable… 

F (new) = F (old ) +α ⋅max
W

GW

∂GW

∂wk



Incoherent Training: 
De-correlation 

Applying incoherent training to one weight matrix in BN 



Incoherent Training: 
Data-driven 

•  If only applying to one weight matrix W: 

• Covariance matrix of Y:    

• Directly measure correlation coefficients based on the 
above covariance matrix:  

          with 
 
 
   Cx is estimate from one mini-batch each time 

 

GW =max
i, j

gij

Y =WTX + b

CY =WTCXW



Incoherent Training: 
Data-driven 

• After soft-max, Derivatives can be computed as: 

 
     where 
 
 
 
• Back-propagation still applies except Cx is computed 

for each mini-batch 

∂GW

∂wk



Incoherent Training: 
Data-driven De-correlation 

When applying Incoherent Training to one weight matrix 



Experiment (I): 
Incoherent Training 

70-hour Chinese ASR Task (word error rate in %) 
MLE: maximum likelihood estimation 

MPE: discriminative training 
DNN-HMM: 13.1% 



Experiment (II): 
Incoherent Training 

320-hour English Switchboard Task (word error rate in %) 
MLE: maximum likelihood estimation 

MPE: discriminative training 
DNN-HMM:  31.2% (Hub5e98) and 23.7% (Hub5e01)  



Conclusions (II) 
• Possible to compete with DNN under the 

traditional GMMs/HMM framework. 

• Promising to use bottleneck features learned 
from the proposed incoherent training. 

• Benefits over DNN/HMM: 
o Slightly better performance 
o Enjoy other ASR techniques (adaptation, …) 
o Faster training process 
o Faster decoding process 



Future works 
• Apply incoherent training to general DNN 

learning 

• Other nonlinear dimensional reduction 
methods for concatenated features 


