Find an algorithm in the literature. The algorithm should either be concurrent or it is a sequential algorithm for which you proposed a concurrent version. The algorithm should not be trivial but also not extremely complex (since you are going to implement the algorithm in Assignment 2). Concurrent algorithms are applicable to various areas including databases, operating systems, etcetera. You are encouraged to find an algorithm in an area of your interest. Preferably, the algorithm should be presented in a journal or conference proceedings.

Write a report. In the introduction of your report, describe why the algorithm is of interest and why it is important. Feel free to use arguments found in the literature,
but rephrase them in your own words and add proper references. Also briefly discuss related work (published before and *after* the paper you chose). In the main part of your report, describe your algorithm using pseudocode. If you have found a description of the algorithm in pseudocode in the literature, you may use that description. However, do not forget to mention the source. Also explain the algorithm in your own words. This implies that you do not copy parts of the paper. Feel free to include examples. If the examples are not your own, then mention the source.

Use LaTeX and BiBTeX to write your report. You may start from the files assignment1.tex and assignment1.bib (remove the suffix .txt from the file name). Skeletons of various types of entries of a BiBTeX file can be found in sample.bib. Numerous tutorials on LaTeX and BiBTeX can be found on the web. If you have any questions, feel free to contact the instructor.

The report should be roughly between 3 and 8 pages. These bounds are not absolute (but one page is definitely not enough and 20 pages is too much).

As the audience of your report, consider your fellow students in the course. myassignment1.pdf contains a sample. The corresponding LaTeX and BiBTeX files are myassignment1.tex and myassignment1.bib, respectively (remove the suffix .txt from the file name).

- Franck van Breugel:

Carla Schlatter Ellis. Concurrent Search and Insertion in AVL Trees.*IEEE Transactions on Computers*, 29(9): 811-817, September 1980.

- Qiyi Tang:

Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. On-the-Fly Exact Computation of Bisimilarity. In*Proceedings of the 19th International Conference on Tools and Algorithms for the Construction and Analysis of Systems*, volume 7795 of*Lecture Notes in Computer Science*, pages 1–15, Rome, Italy, March 2013. Springer-Verlag.

- Mingbin Xu:

Nir Shavit and Itay Lotan. Skiplist-based concurrent priority queues. In*Proceedins of the 14th International Parallel and Distributed Processing Symposium*, pages 263-268, Cancun, Mexico, May 2000. IEEE.

Last modified:

2015/04/03 15:29

2015/04/03 15:29