User Tools

Site Tools


2022-23:winter

Proposed Projects For Winter 2023

Below is a list of 4080/4088/4480 projects proposed by faculty members. More projects may be added once they come in. Please contact the supervisor directly you are interested in a project. You can also contact faculty members individually to discuss possible projects. Click here to see a list of faculty members, their research areas and their contact information.

Mining the Dark Web for Cybersecurity Threats

Course: EECS4080/4480

Supervisor: Prof. Uyen T. Nguyen

Contact: utn@eecs.yorku.ca

The student will be responsible for one or more tasks on the following list depending on the complexity and scope of a task.

  • Searching internet resources (Google, reddit, dark web link archives, etc.) for links to dark web sites of interest
  • Grouping and categorizing dark web pages
  • Developing graphs representing the data present on the found dark web sites
  • Assisting in the development of a dark web crawler
  • Assisting in the development of an information retrieval system
  • Optimizing the performance of the crawler and information retrieval system

Required technical skills:

  • Experience building programs in Python
  • Good understanding of object-oriented design
  • Some experience with HTML and JavaScript
  • Experience with Windows and Linux environments
  • Experience with Excel and/or a commonly used graph generation program

Required non-technical skills:

  • Strong teamwork skills
  • Strong communication skills
  • Good organizational skills
  • Good analytical thinking skills
  • Good time management skills (there will be weekly check-ins)

Desired skills:

  • Knowledge of information retrieval methods

Notes:

  • Email Prof. Uyen T. Nguyen (utn@eecs.yorku.ca) a resume listing courses, projects and prior experience relevant to the project.
  • Some of the tasks listed above require the use of Scrapy. A student can learn Scrapy in the winter 2023 term and take the project course in summer 2023. Please contact the professor to make arrangements for this case.

TA Assignment Application and Preference System

Course: EECS4080/4088/4090 (For Winter 2023, only EECS4080 is offered. EECS4088/EECS4090 start in a Fall term and lasts for two terms.)

Supervisor: Prof. Jonatan Schroeder

Contact: jonatan@yorku.ca

The EECS department hires over 200 teaching assistants (TAs) every term. Like many other departments at York and elsewhere, the requirements to assign each of these TAs to an individual course include many complexities, such as:

  • Guaranteed positions for graduate students that depend on such positions for their funding;
  • Seniority requirements, which give TAs with experience priority in choosing their courses;
  • Course demands and instructor preferences;
  • Scheduling constraints based on TA availability for individual sections;
  • Different skills and requirements in each course;
  • Changes in availability as the term starts, requiring changes that can snowball into other courses.

One of the biggest challenges in assigning TAs is getting access to the information required to perform an optimal assignment. In this project you will create a Web application that gathers two of the most important aspects of the required information:

  1. TA applications, course preference, schedule availability, qualification, general skills, and experience;
  2. Instructor preference: identify qualified TAs, rank applicants, add notes.

This project should allow the information above to be provided using a Web interface, accessible on the Web. All information should be gathered in a database in tables that can be used (separately) to inform the assignment process.

The application should maintain a reasonable level of security, and should ensure that any sensitive information about TA applications and instructor preferences is kept private and secure. Nobody should have access to the information submitted by a TA other than the TA itself and the instructors assigned to the courses that the TA applied for.

The output of this project will be delivered as an open-source project, and although it will focus on requirements in the EECS department, it is intended to be developed in a manner that is still useful in any context outside EECS where such an input is expected. This project may be split between two students working in coordination with each other.

Required skills: EECS 1012 or equivalent experience. Ability to work with Web development, including backend and frontend development. Ability to work independently.

Recommended skills: EECS 3311 or equivalent is strongly recommended. Experience with open-source development, including Git and typical project management (issues, pull requests, etc.). Experience with packaging and deployment of Web applications. Experience with interpreting strict formal requirements.

2022-23/winter.txt · Last modified: 2023/04/07 19:07 by ruppert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki